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Abstract.  Collisions between 36Ar' projectile and 197, target nuclei #E/A=35

MeV have been studied wlth the MSU Miniball, a 4% phoswlch array with a low
detection threshold. AzImuthal distributlons of T1ight charged particles and
Intermediate mass fragments are extracted wlth respect to reaction planes
determined from flsslon fragments or from the emission patterns of coincident
light particles and intermediate mass fragments. The Internal consistency and
sensltlvity to particle detection thresholds are explored for the various
techniques of reactlon plane determlnatlon. For the present reactlon, the
reactlon plane can be determined with comparable accuracy from the distribu-
tlon of flsslon fragments as from the orlentatlon of the major axis of the
transverse momentum tensor constructed from the emitted 1lght particles and
Intermediate mass fragments. Monte Carlo calculations are performed which 11-
lustrate the sensitivity of the transverse momentum tensor method to the
azimuthal anlsotropy of the single particle dlstrlbutlons and the convergence
of thls method as a function of particle multlpliclty. The extractlon of ex-
perimental uncertalntles In the determlnatlon of the reactlon plane Is
dIscussed.

PACS Index: 256.70.Np



I. Introduction
Microscopic descriptions of intermediate energy nucleus-nucleus collisions
must account for the interplay between mean-field and nucleon-nuclieon-
collision dynamics [1~21]. However, this interplay is sensitive to model
parameters, such as the nuclear equation of state and the in-medium nucleon-
nucleon cross section which are not yet accurately known. These quantities
must, therefore, be determined from experimental data.

Calculations indicate that many promising observables are influenced
strongly by the impact parameter and the orientation of the reaction plane,
defined as the plane containing the relative momentum and position vectors of
target and projectile nuclel [13,14,18,21]. Such dependences are difficult to
observe in inclusive experiments which average over impact parameter and reac-
tion plane orientation. More exclusive quantities, such as the emitted
particle distributions for narrow ranges of impact parameter and well defined
orientation of the initial collision plane ("triple differential cross
sections”), are predicted to be much more sensitive to the in-medium nucleon-
nucleon cross section and the nuclear equation of state than the single
particle inclusive cross sections [14]. Similarly, more complex observables,
such as collective flow [22-32], require the determination of impact parameter
and orientation of the reaction plane. It is, therefore, important to optimize
and understand the accuracy with which the reaction plane can be reconstructed
from experimental data and to understand the intrinsic Timitations of each
methed for reaction plane reconstruction.

At higher energies, E/A>100 MeV, information about the magnitude of the
impact parameter is traditionally obtained from the measured charged particle
multiplicity [18,33-35]. At lower energies, E/A%20-50 MeV, comparable informa-
tion on impact parameter has been extracted from measurements of the linear
momentum transfer to fusion-11ke residues [36-38], charged particle [38,39] or
neutron [40,41) multiplicities,

- Information about the orientation of the reaction plane can be derived
from the azimuthal anisotropies of the emitted particles. Such anisotropies
may occur at higher energies, E/A2100 MeV, due to sideward flow of nuclear



matter caused Sy compressional effects [22,23]. At lower energies, E/A4100
MeV, azimuthal anisotropies can result from a collective deflection of light
particles to negative angles caused by the attractive nuclear mean field [42-
49]. Information about the orientation of the reaction plane may be obtained
by diagonalizing the transverse momentum tensor [42,43). The reaction plane 1is

then given by the plane spanned by the beam axis and the major axis of this
tensor.,

In studies of intermediate energy nucleus-nucleus collisions (E/A(100
MeV), diagonalization of the transverse momentum tensor was first used by
Wilson et al. [42,43] for the analysis of near-symmetric collisions between
relatively 1ight nuclei (Aw40). In these measurements, light particles were
detected in 4n-geometry with energy thresholds well above the exit channel
Coulomb barrier. The effect of such thresholds on the accuracy of reaction
plane determinations is not obvious. On the one hand, the azimuthal
anisotropies of emitted particles increase strongly with the kinetic energy of
the emitted particles [42-49], and it is not clear that the inclusion of low
energy particles will improve the accuracy of the reaction plane determina-
tion. On the other hand, an improvement 1in accuracy of reaction plane
determinations might nevertheless be obtained from the increase in statistical
accuracy resulting from the larger numbers of detected particles and from the
inclusion of intermediate mass fragments (IMFs) or fission fragments into the
analysis. These latter reaction products are known [44,48-50] to exhibit par-
ticularly strong azimuthal anisotropies.

In this paper, we compare different techniques which can be employed for
the determination of the reaction plane on an evant-by-event basis. For this
purpose, we performed measurements for the asymmetric reaction 36Ar+197Au at
E/A=35 MeV using the MSU Miniball [51], a new low-threshold 4w charged—
particle detection array. For this reaction, the decay of heavy reaction
residues by fission and/or emission of intermediate mass fragments occur with
high probability. Thus it will be possible to compare the accuracy with which
the orientation of the reaction plane can be determined from the distribution
of emitted 1ight particles or coincident fisgsion fragments. In addition, it
will be possible to assess the effects of particle detection thresholds.



This paper is organized as follows. Experimental details are given in
Section II. In Section III, we define the methods which wil) be employed to
extract the orientation of the reaction plane. Representative energy spectra -
and multiplicity distributions are presented in Section IV. In Section vV, ex-
perimentally extracted azimuthal anisotropies with respect to the reaction
plane will be presented and various methods will be compared. Section VI
presents numerical simulations which serve to illustrate the accuracy with
which the reaction plane can be reconstructed for events with different multi-
plicity. The influence of unknown weight functions is explored end the
extraction of experimental uncertainties of reaction plane reconstructions is
discussed. A summary will be given in Section VII.

II. Experimental Datails

The experiment was performed at the National Superconducting Cyclotron
Laboratory of Michigan State University. An 36Ar beam of energy E/A=35 MeV and
intensity Iaﬂo8 particies per sscond was extracted from the K500 cyclotron and
transported to the 92" scattering chamber which housed the MSU Miniball phos-
wich detector array [51]. The areal dengity of the gold target was 1 mg/cmz.
During the experiment, a vacuum of better than 10'5 torr was maintained in the
scattering chamber. Water and hydrocarbon vapor components in the residual gas
were strongly reduced by a large cold trap filled with liquid nitrogen. By
this means, carbon deposits on the target were reduced to a negligible level.

Light particles and complex fragments were detected using r1ngs 2=11 of
the MSU Miniball phoswich detector array [51]. In this conf1gurat10n. the ar-
ray covered scattering angles of O]Qb-16 -160" and a solid angle corresponding
to 85X% of 4. In Table 1, we list the solid angles and the ranges of polar and
azimuthal angles which are covered by individual detectors of the Miniball,
Additional details about thg geometrical shapes of the detectors are given in
ref. [81]. Each phoswich detector consisted of a 40um (4 ng/cma)'th1ck plastic
scintillator foil backed by a 2 cm thick CsI(T1) crystal. The scintillation
1ight was read out by photomultiplier tubes. A1l detectors had aluminized
mylar foils (0.15 mslcm2 mylar and 0,02 mg/cm2 aluminum) placed in front of
the plastic scintillator foils. As a precaution against secondary electrons,
rings 2 and 3 were covered by aluminum foils of 0.81 mg/cm2 areal density. The



detector array was actively cooled and its temperature was stabilized. @ain
drifts of the photomultiplier tubes were monitored by a 11ght pulser system
[51].

The anode currents from the photomultipliers were split and read out by
three different FERA-ADCs gated over the time intervals Atfastzo—ao ns,
Ats]ow=1°°'5°° ns, and Atta1]=1.0-2.4 s, where t=0 1s defined as the leading
edge of a given detector signal. In addition, the relative times of all dis-
criminator signals were recorded. More details about the electronics and data
acquisit1on system can be found in ref. [51]. Particles punching through the 4
mg/cm plastic scintillator foils were identified by atomic number up to Z=18
and by mass number, as well, for H and He isotopes. The approximate energy
thresholds are Eth/AﬁZ MeV for Z=3, Eth/Ana MeV for Z=10, and !th/A~4 MeV for
Z=18 fragments. Particles of lower energy which wera stopped in the scintii~
lator foils were recorded but could not be fdentified by atomic number,

A1l events in which at least two detectors fired were recorded on magnetic

tape and analyzed off 1ine. Random coincidences were negligible due to the low
beam intensity.

Energy calibrations, accurate to within 5% were obtained by measuring the
elastic scattering of 4He, 6L1 103, 120, 160 and 3501 beams from a 197
get at tncident energies of E( He)/A = 4,5, 9.4, 12, 9, 16, and 20 MeV;
E( L1)/A - 8.9 Mev; EC'8)/A = 15 Mov: E('20)/A = 6, 8, 13, and 20 MeV;

1%)/a = 6, 8, 16, and 20 MeV; and E(3%C1)/A = 8.8, 12.3, and 15 Mev.

Au tar-

III. Definition of reaction planes

In this section, we describe various methods for extract1ng the orienta-
tion of the reaction plane on an event-by-event basis. In Subsection A, we
describe the extraction of the reaction plane from fission-1ike events
detected in the Miniball. In Subsections B and C, we describe several proce-
dures for determining the reaction plane from the distributions of 71ight
particles and intermediate mass fragments emitted in a given event. Throughout
this paper, the "trigger” particle was eliminated from the algorithm used for
the determination of the reaction plane to avoid self-correlations.



Corrections for recoil effects were taken into account when the reaction plane
was determined from the distribution of coincident 1ight particles and inter-
mediate mass fragments.

A. Fission Plane

The Miniball was originally destgned as a low-threshold device for the
detection of intermediate mass fragments. Unit elemental identification was
obtained for particles with Zw#1-18 that punched through the plastic scintil-
lators. It was alsoc possible to discriminate lower-energy heavy fragments that
stopped 1n the fast plastic scintillators from Tight particles. Indeed, from
the measured pulse height in the fast gate, the corresponding time informa-
tion, and the absence of signals 1n the slow and tail gates, it was possible
to select low-energy heavy fragments which could result from fission. Even
though the detection efficiency for fission fragments was not unity, sig-
nificant numbers of events containing two fission-11ke fragments were
observed. The .association of such events with fissfon or fission-1ike
processes 1s corroborated by the measured azimuthal correlation between
coincident low-energy heavy fragments detected in rings 4-7,9, and 10. (Ring
8, at e1ab=90°, was not used for the identification of fission-11ike events
since low-energy heavy particles emitted at e] b-90 are largely stopped 1n
the target which was oriented normal to the beam axis.)

Figure 1 shows the distribution of re1at1vo'azimuthai angles, A¢ff, be—
tween coincident low-energy heavy fragments. These angles were defined over
the angular interval of A¢ff=o‘-180‘ via the relation: A¢ff= cc:s_1
[cos¢f1cos¢f2+s1n¢f1s1n¢f2] y where ¢f1 and ¢f2 denote the azimuthal angles of
. the two fragments. As expected for fission, the azimuthal correlation is
strongly peaked at n¢ff=180'. see soTid 1ine, The width of the distribution is
due to smearing of the angular correlation by pre— and post-fission particle
emission and by the finite granularity of the Miniball. The peak at A¢ffn180'
is broadened and shifted to smaller angles when energetic particles are
emitted normal to the fission plane. This effect 1s 11lustrated by the dashed,
dot-dashed, and dotted 1ines 1n Fig. 1 which show the azimuthal correlations
of low-energy heavy fragments detected in coincidence with particles emitted
with large momentum components normal to the fission plane. In our analysis,



two coincident low-energy heavy fragments were asscciated with fission when
they satisfied the condition A¢ff= 95°-180°. For such events, we defined the
orientation of the fission plane as:

* - 1 L - R
nF 5y (¢ﬂ+¢f2+1ao ] , modulo 180° . (1)

While the conservatively wide cut on A¢ff reduces the loss of efficiency for
reactions in which particles are emitted with large momentum components normal
to the fission plane, it also causes some loss of resolution in the determina-
tion of the fissionh plane due to an increased background of particles not
resulting from fission. Thus the present results can be improved by employing
detectors capable of better discrimination between low-energy intermediate
mass fragments and fission fragments,

B. Gaussian Distributions of sin¢

Collective rotations or the deflection of particles in the mean field may
lead to a hindrance of emission in a direction perpendicular to the reaction
plane [44-49]. As a most simple ansatz, one may assume Gaussian distributions
of the form

P(4-3:P) « exp[-wP(E,M,0)81n°(6-2)] , (2)

where T denotes the azimuthal angle of the reaction plane and ¢ is the
azimuthal angle of the emitted particle. The weight function w(E,M,0) can
depend on the particle’s energy E, mass M, and polar angle @ with respect to
the beam axis. For simplicity, we do not carry explicitly the additional de-
pendence on the magnitude of the impact parameter of fha coltiston.
Distributions similar to Eq. 2 also describe the shapes of azimuthal distribu-
tions for fission of rapidly rotating fusion residues [44].

In the following, we assume that individual emissions are uncorrelated,
i.e. we neglect many-particle correlations. Under this assumption, the joint
probability for emitting N particles in a particular event can be written as:



< N 2 2
P(i:p1,...BN) « exp[1E1 ~wj(E M, ,0,)81n"(¢,-D)] . (3)

In a typical nuclear collision experiment, the orientation of the reaction
plane 1s unknown, and one can try to reconstruct it from the measured dis-
tribution of emitted particles. When N particles are detected in a given
evant, the most probable orientation of the reaction plane corresponds to the
maximum of the joint probability. The necessary condition

& P(E:B,,. B = 0 (4)

can be cast into the form:

u2(E1,n1,e1)sin2¢1

tg(az) = ' (5)

w2(51,u1,e1)cos2¢1

nM—MEznNemrZE
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e

Over the angular interval of E=0°-180°, this equatien has two solutions,
§1 and !2, which differ by 90°. These two solutions give the maximum and mini-
mum of the sum

N
() = §

1 wz(E;,H1,91)sin2(¢1-§) : (8)

1

The value of ¥ which gives the minimum corresponds to the most probable orien-
tation of the reaction plane. It 1s straightforward to show. that the two
solutions of Eq. 5 define the directions of the principal axes of a tensor,

Qon=L (04094 ” M

where 1 1s the particle index, and n and m label the components of the two-
dimensional vector

(w11,w12) = [u(Ei,M1,91)cos¢i, w(Ei,M1,91)sin¢1] . (8)



The maximum and minimum values of the sum in Eq. 6 are equal to the lengths of
the major and minor axes of the tensor nnm‘

For 1llustration, Fig. 2 shows a few representative examples of the family
of curves represented by Eq. 2 (for ¥=0"). For ease of representation, we have
normalized all curves to P(0°)=1. One may characterize these and similar dis-
tributions by the variance,

w172 _ ( 182P(a)de 172

P(6)do ; (9)

or the azimuthal asymmetry coefficient,
Ay = P(0°)/P(30°) = exp[w?(E,N,0)]. (10)

For orientation, the relation between w, <¢2>1/2, and A¢ 1s depicted 1n Fig.
3.

While parametrizations of the form of Eq. 2 are reagsonable, they are by no
means unique. Nevertheless, azimuthal anisotropy coefficients and variances of
experimental azimuthal distributions are useful parameters for their charac-
terization. For broad probability distributions, the azimuthal anisotropy
coefficient is a useful and sensitive parameter. For narrow distributions, the
variance appears more appropriate since the azimuthal anisotropy coefficient
becomes overly sensitive to the functional form with which the tail of the
distribution is described.

As a most simple ansatz, one may assume that the weight function w(E,M,0)
is 1inearly dependent on the transverse momentum of the emitted particles,

w(E,M,0) = £81nBVIME = tpsin® . (11)

Here, £ 1s a proportionality constant. For £=0 the azimuthal distributions are
1sotropic; for €>0 the azimuthal distributions are enhanced in the reaction
plane. Qualitatively, such an ansatz accounts for the experimental observation
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that azimuthal anisotropies increase with mass and energy of the emitted per-
ticles and that they are most pronounced at angles close to €=90° [42-50].
With this ansatz, the orientation of the reaction plane is determined by solv-
ing the equation '

2_,.2
p1s1n e1sin2¢1

tg(2®) = . | (12)

2 .2
p1s1n 91c032¢1

e fnie
BMZH1Z
il

-t

and using that solution which gives the minimum of the sum:

N
%) = 2
Zp(!) = E

k3 p131n291s1n2(¢1-!) . (13)

Equations 12 and 13 are mathematically equivalent to the method used by Wilson
et al. [42,43] who proposed to reconstruct the orientation of the reaction
plane by minimizing the sum of the squares of the momentum components perpen—
dicular ‘to the reaction plane, Eq. 13. This method was applied to the analysis
of azimuthal distributions for near-symmetric collisions at intermediate
energles [42,43]. Equation 12 1s also mathematically equivalent to the
diagonalization of the transverse momentum tensor,‘Anm=E1(p1npim), where 31=

(p11,p12) = (p1s1ne1coso1, p181n9181n¢1) 1s the transverse momentum of par-
ticle 1.

C. Rotating Hot Gas

In order to explore whether reaction plane determinations based upon Eq.
12 are sensitive to the functional form of the azimuthal distributions, we
have employed an alternative parametrization of the azimuthal emission prob-
abi1ity which is related to the energy and angular distributions for particles
emitted from a hot gas rotating about an axis perpendicuiar to the reaction
plane and moving with a velocity V parallel to the beam axis [46].

A simple expression can be obtained by neglecting Coulomb effects and
writing Eq. § of ref. [46] 1n a slightly different form:
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J, (1K)
P(e-8:9) « p expl-92/2NTl [‘L—] . (14)

Here, J1 denotes the first-order Bessel function, and

= B?E ip: - p231n2031n2(¢—!)]1/2 . (15)
The momentum in the rest frame of the emitting source is given by
p§= p2+ m2v2 -2mVpéose. (18)

If one neglects non-exponential factors and factors which are independént of

azimuthal angle, one can approximate J1(1K)/1K as proportional to exp(K) and
make the ansatz:

P(3,B) « exp[t[p -p s1nzes1n2(¢?!)]1/2] y (17

whers kz=Rw/T 1s considered as an unknown width parameter. The orientation of
the reaction plane can then be extracted by maximizing the joint probability,

N .
P(§:31,...3N) o« expKk I (pii-pfs1n201s1n2(¢1-ﬁ)]1/2] . (18)

This maximum can be determined numerically by finding the maximum of the sum
term in the exponent or by solving the equation for dP/dZ=0.

1V. Energy Spectra and Multiplicity Distributions
For reference, Fig. 4 presents the energy spectra of light particles

detected at 6,,,=45". At this angle, particle emission is dominated by non-
compound emission processes. While the low energy portions of the spectra ars
1ikely to contain contributions from the decay of equilibrated heavy reaction
residues, contributions from quasi-elastic projectile breakup reactions are of
minor importance. Particles emitted at this angle were chosen as "trigger
particles” for the analysis of azimuthal distributions with respect to the
reaction plane since (1) the azimuthal distributions at this angle are known
[49] to exhibit large anisotropies and (ii) the yields of intermediate mass
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fragments emitted at this angle are sufficiently large to allow an analysis of
their azimuthal distributions.

Trangverse energy distributions, E -Es1n 8, for protons, deuterons,
tritons, and x-particles are shown in F19 5. The distributions shown in the
figure were obtained by integration over a1l detector rings. The solid lines
in the figure represent simple exponential probability distributions of the
form

P(Et) o exp(-Et/T1) , (19)

characterized by temperature parameters T1 indicated in the figure and also
listed in Table 2. Transverse energy distributions approximated by Eq. 19 will
be used in the Monte-Carlo simulations discussed in Section VI.

Figure 6 presents a two-dimensional contour diagram of the relative prob-
ability to detect a total of N identified charged particles with NIMF
identified intermediate mass fragments (IMFs) among them. Over a rather broad
range of particle multiplicities, the average number of detected intermediate
mass fragments is of the order of unity,

Figure 7 presents experimental multiplicity distributions for the smission
of charged particles [P(Nc), left hand panel] and intermediate mass fragments
[P(dNIMF)' right hand panel]. The solid pointe represent inclusive distribu-
tions, and the open points correspond to distributions detected in coincidence
with two fission fragments selected, as before, by the requirement A¢ff-95 -
180°. The selection of events with two fission fragments in the exit channel,
leads to a slight suppression of reactions with high charged particle and IMF
multiplicities. Nevertheless, the two distributions are rather similar, in-
dicating that the requirement of two fission fragments in the exit channe!
imposes only a relatively modest bias on impact parameter selection.

V. Comparison of Different Methods
In this section we compare various methods which can be employed to tag
the orientation of the reaction plane. In Subsection A, we compare azimuthal
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distributions determined by using Eqs. ! and 12, Recoil effects are discussed
tn Subsection B. In Subsection C, we discuss angular differences between reac-
tion planes determined by the various methods. A quantitative comparison of
azimuthal anisotropy coefficients and variances extracted by means of the fis-
sion and transverse momentum tensor techniques is given in Subsection D;
dependences on particle type and energy are explored. In Subsection E, we dis-
cuss the influence of detection thresholds on the accuracy of reaction plane
determinations based upon Eq. 12. Unless otherwise stated, all comparisons
utilize the same set of data, pre-selected by the requirement that two fission
fragments were detected and that, in addition, the combined number of {den-
tified 1ight particles and intermediate mass fragments was N=4-9. Higher
multiplicities were excluded in this analysis since they select more central
collisions for which the azimuthal distributions are reduced [52].

A. Azimuthal distributions _ _

Azimuthal distributions of 1ight particles and intermediate mass fragments
are shown in Fig. 8. Different panels of the figure show the azimuthal dis-
tribution of the indicated "trigger particle” with respect to the orientation
‘of the reaction plane reconstructed from the remaining detected particles. The
distributions were normalized to an average value of unity. An energy gate of
E/A=12-20 MeV was applied to the trigger particles, energy thresholds for all
other particles were set as discussed in Section II. Open points show
azimuthal distributions measured with respect to the fission plane, £q. 1.
Sol1d points show azimuthal distributions measured with respect to the plane
determined with the transverse momentum tensor method [42,43], Eq. 12.
Quantitatively consistent azimuthal distributions are extracted from both
methods, revealing enhanced emission in the reaction plane.

In order to display similarities and differences between various methods
in a more compact form, we define the experimental azimuthal anisotropy coef-
ficient A¢ as the ratio of in-plane and out-of-plane yields,

_ 2Y(4¢=0°-10")
Ao = Y(ae=70"-50") - (20)
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In this definition, statisticel errors are reduced by integrating out-of-plane
yields over angular intervals twice as large as for in-plane yields. For
strongly focussed azimuthal distributions, the azimuthal anisotropy coeffi-
clent can be rather sensitive to resolution effects at 4¢=0° and A6=90°. Such
effects may be lass relevant for some applications. Therefore, we also extract
the variance, <¢2 1/2, of the experimental azimuthal distribution, see Eq. 9.
The variance of an isotropic distribution is 52°.

B. Corraction for Recoil Effects

Determinations of the reaction plane may suffer from self-correlations due
to momentum conservation [23,30], as the detection of a trigger particio with
large transverse momentum requires a corresponding opposing transverse momen—
tum for the remaining system. Distortions of angular correlations from
momentum conservation effects are particularly pronounced for light systems
'[30,45,46,53,54]. Since it 1s unknown how the recoil momentum imposed by the

trigger particte 1s distributed among the remaining particles, corrections for
such distortions are model dependent,

We have assessed the effects of momentum congervation by employing the
technique proposed by ref. [30]. In this approach, one assumes that the
transverse momentum, ﬁt, of the trigger particle is balanced by a coherently
recoiling source of mass MS. Particles of mass my emitted from this recoiling -
source carry an additional transverse recoi) momentum, 4 b, 4" Ft 1/"8' From
the measured transverse momenta, Bt 4 of the coincident particles one con~
structs recoil-corrected transverse momenta, pt i’ according to the
prescripticn

o _
By 4 = By 4+ Ptm1/Ms.. (21)

The orientation of the reaction plane is determined from these corrected
transverse momenta. The number of nucleons in the recoiling source must be
considered as an undetermined parameter, since it is not clear which particles
share the recoi) momentum imparted by the trigger particle. If the entire
residual system recoils collectively, one would choose M._zM [30] where M

S ‘res
is the total mass of the residual system. Such an assumption would be waIl
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Justified for the sequential decay of compound nuclei. However, for non-
compound emission processes, the situation is less well defined. An
alternative, extreme assumption would be Mszzmozc, where m, is the nucleon
mass and Z, 1s the total charge of detected light particles and intermediate
mass fragments. Such a choice could be reasonable 1f one assumed that all
detected particles were emitted from a clean-cut participant region, contain-
ing equal numbers of protons and neutrons, which did not interact with the
spectator nuclei. The actual recoil effects are 1ikely to 1ie within these ex-
tremes. More accurate evaluations of recoil effects require complete dynamical
treatments of the reaction.

In order to assess the importance of recoil effects in more general terms,
we have considered the mass, "S' of the coherently recoiling source as an un-
determined parameter and explored the sensitivity of the azimuthal asymmetry
coefficient to this parameter for 1ithium frégmonts of energies E/Aa8 MeV upon
this parameter. The results are shown in Fig. 9. For Hsz40mn, the extracted
azimuthal anisotropy depends only weakly on MS; however, for smaller values,
A¢ rises strongly as a function of M.. Most 1ikely such a strong dependence
arises from an over-correction of the recoil effect. In any case, such small
values are difficult to justify for collisions excluding the most peripheral
interactions, and the resulting large corrections must be viewed as unreli-
able. For the remainder of our analysis, we chose Ms=72mo corresponding to a
coherently recoiling source consisting of twice the number of projectile
nucleons. OQur final results and conclusions are rather insensitive to the ap~
plied recoil correction.

C. Differences Between Reaction Plane Orientations

It 1s important to know whether different techniques determine eimilar
planes. Figure 10 shows distributions, P(AZ), of relative orientations between
planes extracted by different methods. Since no polarizations are determined,
the angle between any two planes can only be defined between AZ20° and AZ=90".
For convenience of comparison, we have adopted the normalization P(aAR=0°)=1.
For compactness of notation, EF denotes the azimuthal orientation of the fis-
sion plane determined from Eq. 1; QPT and ﬂrot denote the azimuthal
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orientations of planes extracted from Egs. 12 and 18, respectively. The orien-
tation of these latter planes were extracted from the distributions of
identified Tight particles and intermediate mass fragments.

The solid 1ine in Fig. 10 shows the difference between EPT and 'rot'
Clearly, these two planes are virtually identical. In view of the simple form
of Eq. 12, the use of this (or a mathematically equivalent equation [42,43])
appears more convenient and preferable.

Relatively large differences exist between the orientation of the fission
plane and the plane defined by the orientation of the major axis of the
transverse momentum tensor constructed from the distribution of tight par-
ticles and intermediate mass fragments. These differences are shown by the
sol1d points in Fig. 10, Nevertheless, the most probable relative orismtation
between the fission plane and planes extracted from the distribution of as-
sociated particles is A%=0".

The rather broad distribution of :IF—EPT: reflects Timitations of the
transverse momentum tensor and/or fission methods for average types of events.
For example, the distribution becomes narrower when one selects events with at
least one energetic (E>80 MeV) «-particle detected in rings 4-7, see open
potnts in Fig. 10. Intrinsic uncertainties of the two methods will be dis-
cussed 1n Section VI,

D. Azimuthal Anisotropies

Figures 11 and 12 show azimuthal antsotropy coefficients and variances of
azimuthal distributions measured with respect to reaction planes determined
with Eq. 12 from the light-particle and IMF emission patterns (open points)
or, alternatively, with Eq. 1 from fission fragments (sol1d points). In all
cases, the trigger particles were detected at 6=45°. Different panels show
results for different ranges of kinetic energy per nucleon of the trigger par-
ticle. Consistent with previous observations [44~50], the azimuthal
anisotropies increase with mass and kinetic energy of the detected trigger
‘particle. In all cases, the azimuthal anisotropy coefficients extracted with
the fission and transverse momentum tensor techniques are very similar.
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We have explored the possibility of determining the reaction plane with
improved resolution by including all detected (but not identified) low-energy
heavy fragments into the analysis. For this purpose, low energy fragments
stopped in the fast plastic scintillator foils were given the weight of fast
x-particles with a transverse momentum of

Pe= 1.1 sin%6 Gev/c . (22)

Our final conclusions are not very sensitive to this specific choice, and
qualitatively similar results are obtained for slightly different weights.
Azimuthal anisotropy coefficients and variances extracted by diagonalizing the
momentum tensor for all detected particles (Eqs. 12, 22) are shown by the open
squares in Figs. 11 and 12, respectively. With this combined technique,
slightly larger azimuthal anisotropy coefficients are extracted for heavy and
enerﬁetic particles than were obtained with either the fission technique or
the transverse momentum tensor technique alone, pointing towards intrinsic
Timitations of both techniques.

Similar improvements are also obtained when one analyzes data preselected by
the condition that at least one low-energy heavy fragment was detected, ir-
respective whether 1t is detected in coincidence with a second fragment or
with several fragments. These results are shown fn Fig. 13. The open squares
and solid points show anisotropy coefficients extracted by the transverse
momentum method 1ncluding and excluding, respectively, unidentified low-energy
heavy fragments into the analysis by means of Eq. 22. These results suggest
‘that significant improvements in resoiution could be obtained with detectors
capable of identifying heavier particles and with lower energy thresholds than
was possible in the present experiment. However, the true improvement may be
less than suggested by the Fig. 13, since we could not apply reliable correc-
tions for recoil effects to unidentified low-energy heavy fragments.

E. Effects of Detection Thresholds _

For increasingly violent heavy ion collisions, fast particle emission
leads to heavy residues of decreasing fissility. Thus, the Tikelihood for fis-
sion 1n the exit channel decreases. Indeed, for nucleus-nucleus collisions at
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relativistic energles, fission is only observed for peripheral collisions [56-
§7]. For collisions at smaller impact parameters, the orientation with respect
to the reaction plane must then be inferred from the Tight particle and inter-
mediate mass fragment emission patterns.

Optimum ‘determinations of the reaction plane are expected when large num—
bers of energetic x-particles or intermediate mass fragments are detected in
the exit channel. For a given class of collisions, one might hope to improve
the determination of the reaction plane by raising the particle detection
threshold in an attempt to reduce the “noise” from randomly emitted particles
which bear 11ttle memory of the reaction plane. On the other hand, low-energy
particles might st111 retain some 1imited memory of the reaction plane and
their inclusion might help improve the statistical accuracy of reaction-plane .
determinations on an event-by-event basis. At present, microscopic calcula
tions predict the emission of low-energy particles with 1imited accuracy only.
Therefore, the relative advantages of 1nc1ud1ng or excluding low-energy par-
ticles are best evaluated with real data.

In Fig. 14, we demonstrate the influence of particle detection thresholds
on the magnitude of the azimuthal anisotropy coefficients for reaction plane
reconstructions based upon Eq. 12. The data set used in this analysis was
preselected by the requirement N=4-9 and the reaction plane was determined
from the subset of 1ight particles and intermediate mass fragments which
satisfied the indicated threshold requirements. Thus the bias on impact
parameter selection was kept constant, while the number of particles included
in the determination of the reaction plane depended on the indicated energy
threshold. The results are clear: For the present reaction, the inclusion of
low-energy particles and intermediate mass fragments improves the definition
of the reaction plane.

VI. Monte—Carlo Simulations
In this section, we explore the convergence of the transverse momentum
tensor method by performing Monte Carlo calculations. In Subsection A, we in-
vestigate improvements in accuracy as a function of particle multiplicity and
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average azimuthal anisotropy of the emitted particles. In Subsection 8, we ex-
plore the sensitivity to optimum choices of the weight functions used in Eq.
6. In Subsection €, we discuss the determination of the experimental uncer-
tainties of reaction plane determinations.

A. Dependence on Azimuthal Anisotropy and Multiplicity _

The accuracy with which the reaction plane can be determined frem the dis-
tribution of light particles depends both on the charged particle multiplicity
and on the anisotropy coefficient A¢ characterizing the azimuthal distribu-
tions of the emitted particles. In order to explore the degree of accuracy
with which the reaction plane can be reconstructcd from the measvred particle
distributions, we have performed Monte-Carlo simulations which genarate events
of fixed multiplicity with particles distributed azimuthally according to Eq.
2. In this and the following calculations, we assumed stochastic emission of
light particles of mass A=1-4 with relative weights 61 (i=1-4) taken from the
p, d, t, and « cross sections measured for the present reaction. The probabil-
ity distributions of the transverse energies, Et=(p2/2m)s1n29, were
approximated by exponential functions, Eq. 19, characterized by temperature
parameters T1 determined from the slopes of the angle integrated transverse
energy distributions shown in Fig. 5. As a further simplification, we intro-~
duced sharp cuts in the range of transverse energies over which the emission
of particles was simulated. The detailed parameters used in the simulations
are listed in Table 2. For computational speed, the calculations were per-
formed on a grid with binning widths 4¢=1" and AE,= AEsin’e = 1 Mev.

For each event, Eq. 5 was used to reconstruct the orientation of the reac-
tion plane. For each ensemble of events, characterized by a given weight
function and a fixed number of particles used for the reconstruction of the
reaction ptlane, we calculated the probabitity distribution, P(AE), of relative
orientations between the "true" and reconstructed reaction planes. As before,
we adopted the normalization P(A%=0°)=1.

As a first instructive example, we performed calculations for the
(unrealistic) case of constant weight functions, w(E,M,®)=constant, and
studied the accuracy with which the reaction plane was reconstructed as a
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function of particle multiplicity. The results of these schematic calculations
are shown tn Figs. 156 and 18. Figure 15 shows the azimuthal distributions of
the reconstructed reaction planes. Different panels in the figures are labeled
by the azimuthal anisotropy coefficients, A¢=exp(u2), characterizing the
single particle probability functions. The curves in each panel are labelled
by the number, N, of particles used for the reconstruction of the reaction
plane. (Trivially, curves for N=1 are jdentical with the single particle dis~
tributions.) The calculations confirm the qualitative expectation that the
orientation of the reaction plane can be reconstructed with improved accuracy
when more particles are detected. In general, howevar, the convergence as a
function of N is rather slow. The figure also i1lustrates that much can be
gatned, even at very low multiplicity, if one detects particles which have
azimuthal distributions characterized by large azimuthal anisotropy coeffi-
clents A¢. The solid curves in Fig. 16 depict the rate of convergence in a
more compact form. Here, the variances, <A!2>1/2, of the distributfons P(AZ)
are shown as a function of particle number N. (Note that: <A!2>1/2~52‘ for
isotropic distributions, see also Fig. 3.) The different curves are labelled
by the azimuthal anisotropy coefficients characterizing the underlying single
particle distributions. '

In more realistic situations, the weight function depends on particle type
and energy. In such cases, the convergence of reaction plane reconstructions
as a function of particle multiplicity depends on the energy spectra, the
relative weights of various detected particles, and on the functional form of
the weight function. To illustrate this effect, we have performed calculations
for weight functions of the form w=epsin® for which the transverse momentum
tensor method 1s optimal and Egs. 5 and 12 are identical.

The dashed curves in Fig. 16 show that reaction plane reconstructions con-
verge slightly more rapidly as a function of particle multiplicity when the
weight function is proportional to the transverse momentum, Eq. 11, as com~
pared to the less realistic case when it is constant (solid 1ines).
Qualitatively, this more rapid convergence is related to our previous observa-
tion that much can be gained from particles with large transverse momenta for
which A¢ 1s large. A set of N>1 particles i1s 1ikely to contain some enargetic
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particles for which the azimuthal distribution 1s considerably more
anisotropic than for the average particle set. Such energetic particles can
tag the orientation of the reaction plane more accurately than several par-
ticles with average azimuthal anisotropies, provided the weights of these
particles are properly taken intoc account.

B. Sensitivity to Optimum Choice of Weight Functions

When the weight function w(E,M,0) is known, solutione of Eq. 5 provide the
best estimate for the orientation of the reaction plane, However, in general,
the weight function is not known, and one has to rely on empirical procedures.
For intermediate energy heavy ion reactions, the diagonalizatien of the
transverse momentum tensor, Eq. 12, has been used with good success [42,48].
It 1is, therefore, of interest to explore the convergence of this method for
azimuthal distributions of the form of Eq. 2, but with weight fﬁnctions dif-
ferent from Eq. 11, i.e for cases for which Eq. 12 does not present the best
possible method.

Such comparisons are presented in Fig. 17. In these calculations, we have
assumed azimuthal distributions given by Eq. 2 with w=constant (left hand

panels) and u:VEEQTHE (right hand panels). The dashed curves show the dis-
tributions P(AE) obtained by reconstructing the reaction plane with Eq. 12 and
the solid curves show the distributions obtained by reconstructing the reac-
tion plane with the optimum relation, Eq. 5. Trivially, the two curves
coincide for N=1, giving the average single particle distribution. For larger
multiplicities, the use of the optimum relation, Eq. 5, gives narrower dis-
tributions for P(AE). While the differences for w=constant are still

appreciable, they become insignificant for w=Vepsin®. Thus reconstructiens of
the reaction plane at Tow particle multiplicities are only moderately sensi-
tive to the detailed functional form of the weight functions, as long as they
account for the rough trends of azimuthal anisotropies as a function of par-
ticle type and momentum. This insensitivity to the detailed shape of the
weight function also provides a qualitative understanding for the improvement
which could be obtained by including particles which exhibit strongly
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anisotropic azimuthal distributions, such as low-energy heavy fragments, even
when their weight functions are not accurately known.

C. Estimate of Experimental Uncertainties

Experimental uncertainties of reaction plane reconstructions can be es-
timated [22, 23] by randomly subdividing each event of multiplicity N into two
subsets 1 and 2, each of multiplicity #N. For each subset, one determines the
orientation of the reaction plane according to Eq. 5§ and extracts the angle
A!12 between these two planes. From the probability distribution P(AI12) one
can make inferences about the accuracy with which the reaction plane can be
reconstructed for the complete event.

The problem can be analyzed in two steps. First, the experimental dis-
tribution P(A§12) 1s used to make an estimate for the probability distribution
PiN(AQ) of the angle between the true reaction plane and the reaction plane
determined from N particles. Second, one uses the distribution PiN(A') to
make an estimate about the distribution PN(Aﬂ) for events with N detected par-
ticles. In this step, one must estimate how the accuracy of the extraction of
the reaction plane is improved by increasing the number of detected particles
from IN to N. Numerical calculations, performed for single particle distribu~
tions of the form of Eq. 2, indicate that both steps can be made rather

quantitatively and with 1ittle dependence on detailed model assumptions.

Figure 18 shows experimental distributions P(n¢12) extracted from our data
using Eq. 12. The left hand panel shows the distribution extracted from iden~
tified light particles and intermediate mass fragments and the right hand
paneT shows the distribution for which low energy heavy fragments were in-
¢luded according to the prescription of Eq. 22. The solid lines show the
results of Monte—Carlo calculations for the distribution P(A!12) for events
generated with multiplicity N=8, using weight functions w=tpsin® (Eq. 11) and
transverse energy distributions given by Eq. 19. In these calculations, the
weight factors € were adjusted to reproduce the experimental distribution. The
dot-dashed and dashed curves show the calculated distributions PiN(nﬂ} and
PN(AI) for the relative orientations between the true reaction plane and the
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planes reconstructed from subset containing #N=4 and from the full set con-
taining N=8 particles, respectively. Even though the distributions for P(Al1a)
are broad, the predicted accuracy of the reaction plane detarmination for the
full event is rather satisfactory, especially when low-energy heavy fragments
are incorporated into the analysis. The rather large difference between the
distributions P(A§12) and P*N(A!), solid and dot-dashed curves, arises from
the convolution of the probability distribution P*N(Aﬁ) with itself:

P(A§12) = J PiN(I)PiN(!+A!12)d! . (29)

The difference between the distributions PiN(AIa and PN(AE) shown by the dot~
dashed and dashed curves arises from the improvement 1in accuracy with a
doubling of the multiplicity, see also Fig. 1§6.

The calculated probability distributions P(AR) for the angle between the
true and reconstructed reaction planes are qualitatively similar 1in shape to
the family of curves represented by Eq. 2, compare Figs. 2, 15 and 17.
Therefore, one may hope to be able to relate the most important characteris-
tics of the functions P(AI12) and PiN(AQ) without much sensitivity to details
of the weighting functions or particle multiplicities employed for the
reconstruction of the reaction plane. In order to explore this pessibility, we
have performed a number of calculations with Eqs. 2, 11 and 12 using various
parameters £ and different multiplicities. For each of the calculated dis-
tributions, P(AZ,,) and P&N(AQ), we have extracted the azimuthal anisotropies,

A and A, (Eq. 10), and the variances, <A!2 >1/2 and <A§2 >1/2 (Eq. 9). The
2., BN , 12 N
relation between the calculated azimuthal anisotropy coefficients 1s shown by

the open points in the bottom panel of Fig. 19; the points in the top panel
show the relation between the variances. The calculated relation between these
quantities follows rather closely the relation obtained by convoluting func-
tions of the form of Eq. 2 (with w=constant) in analogy to Eq. 23. This latter
relation is shown by the solid curves in Fig. 19.

Reversing the argument, one may use the solid curves shown in Fig. 19 to
assess the shape of the distribution P&N(ﬁ!) from the measured distribution
P(Aﬁ12). The results shown in Fig. 16 suggest that the extrapolation from
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PiN(A!) to PN(A!) may be somewhat uncertain if the exact shape of the weight
function 1s not known. In order to assess such uncertainties, we have calcu-
lated the variances, <A!§N>1/2 to <AE:>1/2, of distributiens, PiN(A’) and
PN(Aﬁ), for a broad range of multiplicities and/or azimuthal anisotrepy coef-
ficients of the average single particle distributions. Examples of such
calculations are shown by the open and solid points in Fig. 20. Open and solid
points represent calculations with momentum dependent (w=€psin8) and momentum
independent (u=w0=const.) weight functions for various choices of the
parameters £ and Wgs respectively. The numerical simulations indicate that the
dependence on the weight function is rather weak. Moreover, the variances of
the two distributions are found to follow a nearly universa) curve, independ-
ent of the value of N. (Trivially, for very large N, the central l1m1t_;hooram
predicts that the two distributions should be related by a factor of v2.)
Hence, the extrapolation from <A!§N>‘/2 to <A§§>1/2 is afso rather model inde-
pendent. For future reference, we have fit the points in Fig. 20 with a simple

polynomial of the form:

>1/2+ 0.135<M§2 > . (24)

2.1/2 _ 2
<A§N> = 2.292 + 0'278<A§iN N ‘

The arguments can be generalized to assess the relative accuracy of reac-
tion plane determinations by the fission and transverse momentum tensor
methods for events in which two fission fragments are detected in the exit
channel. Figure 21 shows the distributions, P(A%), for the relative orienta-
tions of planes determined from two half-subsets of 11ght particles and IMFs
lP(A§1_2): solid points); from one half-subset and from fission fragments
[P(AEF_1): star shaped points}; from fission fragments and from the full set
of N=4-9 1ight particles and IMFs [P(AﬁF_N): open squares). In order to obtain
estimates of the primary distributions (PiN(AE), PN(n!), PF(Aﬁ)) of the ex-
perimentally determined planes with respect to the true reaction plane, we
assume that the relative orientations between two planes A and B can be
described by convolutions of the form

P(AZ, p) = | P,(B)Py(B+28, )d , (285)
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whare PA(E) and PB(Q) denote the probability distributions for the angle % be-
tween the true reaction plane and the planes A and B, respectively. For
simplicity, we assume that the distributions PA(I) and PB(ﬁ) can be
parameterized in terms of Eq. 2 with w=constant. The dashed curves in Fig. 21
show the convolutions of the individual reaction plane distributions, Eq. 25.
From the convolution of the two-half sets, we extracted the shape of the dis-
tribution PiN(AI), shown by the dot-dashed curve. Using this information, we
estimated the shape of the distribution, PF(AE), of fission plane orientations
(dotted curve) from the relative distributions of the planes extracted for one
half-subset and from fission. Finally, we made an estimate of the shape of the
distribution, PN(AQ). of planes extracted from all 1ight particles and IMFs
(so11d curve). As might have been expected from Figs. 8 and 11, the estimated
distributions PF(AE) and PN(AE) have similar azimuthal anisotropies for the
present reaction, in qualitative agresment with the observations of ref. [49].

In order to obtain an estimate of the azimuthal distribution of the
various trigger particies with respect to the true reaction plane, we assume
that the accuracy of reaction plane determinations does not depend on the
trigger particles. This assumption may not be strictly valid since different
trigger particles may originate from collisions with different ranges of im-
pact parameter characterized by different azimuthal distributions of the
emitted particles. Furthermore, we assume that the experimental azimuthal dis-
tributions can be described by convolutions of the form of Eq. 25, where
distributions A and B now represent the distributions of the trigger particle
and of the experimentally determined reaction plane with respect to the true
reaction ptane, respectively. The distribution of fission planes, PF(E), could
have been taken from Fig. 21. Instead, the fission distribution, the in-
dividual trigger particle distributions and the distribution of planes,
PN_1(§), extracted from detected light particles and IMFs {(excluding the trig-
ger particle) were fitted simultanecusly to the data shown in Fig. 8 and to
angutar correlations, P(AIF_(N_1)), between the fission plane and the plane
defined by the N-1 Tight particles and IMFs which were detected in coincidence
with the trigger particle. The fission distribution, PF(!), extracted from
this global fit displayed an azimuthal anisotropy coefficient of A!,F=7'°=°'3
cansistent with the results shown in Fig. 21 and providing an additional cross
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‘:.’

check for the accuracy of our previous results obtained by subdividing each
event into two subsets containing equal numbers of particles. The extracted
distribution PN_1(!) was found to be slightly less anisotropic that the dis-
tribution PN(E) shown by the solid curve in Fig. 21. This slight difference is
consistent with the fact that, in Fig. 22, one less particle is used for the
construction of transverse momentum tensor. Within the experimental uncer-
tainties, the difference between the extracted distributions PN(!) and PN_1(§)
18 consistent with the calculated multiplicity dependence shown 1n Fig. t16.

For 11lustration, Fig. 22 gives a comparison of these global fits (solid
curves) with the experimental distributions extracted by means of the
transverse momentum tensor method (solid points). (Fits of similar quality are
obtained for azimuthal distributions measured with respect to the fission
plane.) For ease of presentation, all calculated distributions shown in the
figure were normalized to P(0)=1, and the normalization of the experimental
distributions was treated as a fit parameter. The dashed curves show the ex-
tracted distributions of the indicated trigger particles with respect to the
true reaction plane. Quite clearly, all measured azimuthal distributions are
strongly damped by the finite resolution with which the reaction plane 1is
determined experimentally. For particles heavier than x-particles, the
measured azimuthal distributions are more sensitive to the limited accuracy of
the experimental reaction plane determination and less sensitive to the
azimuthal anisotropy of the underlying triple differential cross section of
the trigger particle.

VII. Summary and Conclusion

In this paper, we have investigated and compared various methods to deter-
mine the orientation of the entrance channel reaction plane from the
distribution of detected particles. In order to allow a comparison of methods
utilizing 1ight particles and with that using fission fragments, we studied
the asymmetric reaction 36Ar+197Au at E/A=35 MeV.

For this reaction, very similar azimuthal correlations were observed with
respect to the fission-plane and with respect to the plane defined by the
orientation of the major axis of the transverse momentum tensor. The
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reconstruction of the reaction plane was shown to improve with lower detector
thresholds and when unidentified low-energy heavy fragments, stopped in the
scintillator foils of our detectors, were incorporated into the analysis.
Further improvements could be expected with detectors capable of identifying
such particles and measuring their energies.

The convergence of the transverse momentum tensor method was explored via
Monte Carlc simulations. The quality of reaction plane reconstruction was
found to be sensitive to the azimuthal anisotropy of the average single par-
ticle distributions; it was only moderately sensitive to the mu1t1p1161ty of
detected particles. Exact knowledge of the weight functions, characterizing
the dependence of azimuthal anisotropies on energy, angle, and particle type,
. was found to be of minor importance as long as known dependences waere taken
into account in an approximate way.

In situations in which the transverse momentum tensor method is close to
optimal, one can obtain reasonably accurate information about the resolution
of reaction plane reconstructions by dividing events into two parts, each with
half of the original multipiicity, and determining the probability distribu-
tion of the angle between the reaction planes determined for each of these
subsets. From this experimental probability distribution, one can unfold the
resolution of reaction plane reconstructions for each of these parts in a
fairly model independent fashion. Furthermore, the extrapolation of the
resolution for the full event was found to be relatively insensitive to the
functional form of the weight function. In practically all cases, the
azimuthal distributions of trigger particles measured with respect to ex-
perimentally determined reaction planes were found to be strongly damped by
the accuracy with which the reaction plane can be determined experimentally.

Detailed comparisons of experimentally measured triple differential cross
sections with theoretical predictions must account for the intrinsic resolu-
tions with which the reaction plane was reconstructed. The accuracy of
reaction plane reconstructions was shown to depend strongly on the azimuthal
anisotropies of the detected particles which are largest for complex par-
ticles. On the other hand, many microscopic theories presently predict only
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single-nucleon distributions. In order to be able to make quantitative com
parisons of experimental triple differential cross sections with predictions
of single-particle theories one must solve the problem of relating the
azimuthal distributions of nucleons to those of complex particles.
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fully acknowledged. This work 1s based upon work supported by the National
Science Foundation under Grant numbers PHY-86-11210, PHY-89-13815. WGL acknow-
ledges the receipt a of U.S. Presidential Young Investigator Award and NC
acknowledges partial support by the FAPESP, Brazil.
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Tables

Table 1; Coverage in solid angle, polar and azimuthal angles for individuai
detectors of the Miniball. Ring 1 was not used in this experiment.

! LA f A ! A¢(deg) !
1 ! 12,5 § 131 1 ! 30 !
2 ! 196 ! 15.4 ' T ! 22,5 !
3 | 27.0 ! 18.5-! 8 ' 18.0 !
4 ! 355 ! 226 !. 9 ! 15.0 !
§ ! 45.0 ! 30.2 ! 10 ' 15.0 !
6 | 57.5 ! 66,9 ! 156 ! 18.0 !
7' 728 0 72T ! 15 ' 18.0 !
8 ! 0.0 ! 93.3 ! 20 ! 20.0 !
¢ ! 110.0 | 134.2 ! 20 ! 25.7 !
10 ! 130.0 ! 132.0 ! 20 ! 30.0 !
11} 150.0 | 136.2 | 20 | 45.0 |

Table 2; Parameters used in the Monte-Carlo simulations of the reaction plane
reconstruction. E1 and Eh denote the low and high energy limits of the
transverse energy spectra used in the calcalutions.

mass number

: LT (MeV) | E,(MeV) IE, (MeV) !
1 2,22 ) 748 ) 3 i 160 |
2 ! 0.86 ! 9.6 [ 5 I 150 |
3 } 0.55 | 1063 | 8 | 160 |
4 ! 2,00 { 9.64 | 10 ! 200 |
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Figure Captions

Fig9. 1; Azimuthal correlations between low-energy heavy fragments detected in
rings 3-7,9,and 10. The solid curve shows the inclusive correlations: the
other curves show correlations when a trigger particle with the indicated
transverse momentum is emitted at ©=45° and normal to the fission plane.

Fig. 2: Family of azimuthal distributions with respect to the raqct1on plane

described by Eq. 2. The curves are labelled by the azimuthal anisotropy coef-
ficient, Eq. 10.

Fig. 3: Relation between weight function, variance and azimuthal anisotropy
coefficient for the family of curves described by Eq. 2. (For definitions, see
Eqs. 9, 10.)

Fid. 4: Energy spectra of particles detected in Ring 5 (centered at
elab=45.)' The sharp cut-offs in the energy spectra of the hydrogen isotopes
at E #70 MeV, Ed= 100 MsV, and Et=120 MeV reflect software gates eliminating

P
particles punching through the CsI{(T1) crystals.

Fig, 6: Transverse energy spectra measured in this experiment. The solid
curves show the exponential approximation to these energy spectra used in the
Monte Carlo calculations shown in Figs. 18-21, The sharp drop in the energy
spectra at high energies is an experimental artifact due to particles punching
through the detectors.

Fig. 8; Two-dimensional contour diagram of the relative probabilities for
detecting a total of N tdentified charged particles of which NIMF part1c]as
are identified 1ntermed1ate mass fragments (Z23).

Fig. 7: Charged particle (left hand panel) and (IMF) multiplicity distribu-
tions measured inclusively (solid points) and in coincidence with fission
fragments (open points).
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Eig. 8: Azimuthal distributions of particles measured with respect to the
fission plane, Eq. 1 (open points), and with respect to the plane determined
from the major axis of the transverse momentum tensor, Eq. 12 (solid points).
The eiemental charge of the trigger particles, emitted at 6z45°, 1s indicated
in the individual panels; the energy gates for the trigger particles were
E/A=12-20 MeV.

Fig. 9: Dependence of the azimuthal anisotropy coefficient for Li fragmants
upon the assumed mass A of a recoiling source when one corrects for recol) ef-
fects by means of Eq. 21 and determines the crientation of the reaction plane

from Eq. 12. An energy gate of E/A>8 MeV was applied to the L1 trigger frag~
ments.

Fi19,10: Distributions, P(AZ), of relative azimuthal orientations between
planes determined by various methods. ﬁF 1s the azimuthal orientation of the
fission plane, Eq. t; QPT and Erot denote azimuthal orientations of the planes
extracted from the light particle and intermediate mass fragment distributions
by means of Eqs. 12 and 18, respectively. Solid and open points: :!F-!PT: dis-
tributions for all events and for events with at least one energetic (Ea>80

MeV) «-particle detected in rings 4-7.

Fig.11: Azimuthal anisotropy coefficients with respect to planes determined
from fission, Eq. 1 (open points), from the 1ight-particle and IMF emission

patterns, Eq. 12 (solid points), and with the inclusion of unidentified low-
enargy heavy fragments, Egs. 12 and 22 (open squares). Different panels show
results for different energties of the trigger particles.

F19.12: Variances of azimuthal distributions with respect to planes deter-
mined from fission, £q. 1 (open points), from the light-particle and IMF
emission patterns, Eq. 12 (solid points), and with the inclusion of uniden-
tified low-energy heavy fragments, Egs. 12 and 22 (open squares). Different
panels show results for different energies of the trigger particles.

Fig.13: Azimuthal anisotropy coefficients with respect to planes determined
from the light-particle and IMF emission patterns, Eq. 12 (solid points), and
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with the inclusion of unidentified low-energy heavy fragments, Eqs. 12 and 22
(open squares). Different panels show results for different energies of the
trigger particles. Events were presorted by the requirement of N=4-9 and at
least one low-energy heavy fragment in the exit channel.

Figa.14; Influence of particle detection thresholds on azimuthal anisotropy
coefficients determined by means of Eq. 12. The applied energy thresholds are

indicated in the figure. Minimum energy thresholds of the detector are given
in Section 1I.

Fi9.16: Probability distributions P(A%) for the angular difference AE between
the true and reconstructed reaction planes. The azimuthal distributions of the
emitted particles were assumed to have the form of Eq. 2 with constant weight
functions, w=constant. Different panels show results for different azimuthal
anisotropy coefficients, Eq. 10, characterizing the single particie distribu-
tions. The curves are labelied by the number of particles used for the
reconstruction of the reaction plane.

Fig.16: Variances for probability distributions P(AZ) for the angle, A3, be-
tween the true and reconstructed reaction plane (Eq. 5) as a function of
particle multiplicity N. The different curves are labelled by the azimuthal
anisotropy coefficients characterizing the single particle distribut1ons.‘
Solid and dashed curves show the results for weight functions w=constant and
w=Epsind, respectively.

Fig.17: Probability distributions P(48) for the angular difference AZ between
the true and reconstructed reaction planes. The azimuthal distributions of the
emitted particles were assumed to have the form of Eq. 2 with wzconpstant (left
hand panels) and w=€psin® (right hand panels). The solid curves show the
results obtained by using the optimum relation, Eq. 5, and the dashed curves
show the results obtatined by applying Eq. 12. Averages over light particles
(A=1-4) were performed with realistic weights. The top and bottom panels show
results for two different azimuthal anisotropy coefficients (A¢= 1.4 and 2.0)
for the average single particle distribution. The curves are labelled by the
number of particles used for the reconstruction of the reaction plane.
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Fig.18: The points show distributions P(n!12) for the angle 5512 between two
reaction planes, each extracted from subsets of detected particles containing
half the total event multiplicity using the transverse momentum tensor method,
Eq. 12. The left hand panel shows the distribution extracted from tdentified
Tight particles and intermediate mass fragments; the right hand panel shows
the distribution obtained by also including un1dentjfied low-energy heavy
fragments according to Eq. 22. The solid Tines show results of Monte~Carlo
calculations for the distribution P(AI12) using N=8 and w=tpsind with £ ad-
Justed to reproduce the data. The dot-dashed and dashed curves show the
calculated distributions PQN(Ai) and PN(AE) for the relative orientations be-
tween the true reaction plane and the planes reconstructed from aN=4 and N=8
particles, respectively.

Fig.19; The open points show the relation between azimuthal anisotropy

parameters (A! and A§ ) and variances (<nﬁ12 1/2 and <A§§N>1/2) of dis-"~
12 N
tributions P(A§12) and Piﬂ(ﬂi) obtatned by the Monte Carlc simulations

described in the text. The curves show the relation obtained with Eq. 23, when

ohe approximates the distributicns PiN(¢) by analytical funct1ons, iN(¢) o
exp(-w sin ¢).

F19.20; Relation between the Var1ancas, <A!§N 1/2 and <A§:>1/2, of distribu-
tions, Piu(ni) and PN(A!), calculated for a broad range of multiplicities and
parameters £ and Wge Open and solid points represent calculationgs with momen—
tum dependent (w=£psin®) and momentum independent (u:uo) weight functions,

respectively. The curve represents a polynomial fit, Eq. 24.

Fig.21: Distributions for the relative orientations of planes determined from
two half-subsets of 1ight particles and IMFs (solid points), from one such
half-subset and from fission (star shaped points), and from the full set of
1ight particles and IMFs and from fission (open squares). The dashed curves
represent convolutions of the estimated distributions, P*N(Aﬁ), PN(AEJ, and
PF(AE), shown by the dot-dashed, solid, and dotted curves, respectively.
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Fig.22; Azimuthal distributions of the various trigger particles with respect
to the measured reaction plane (solid points). Dashed curves show assumed dis~
tribution with respect to the true reaction plane. Solid curves show the
results obtained by the convolution described in the text.
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