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Abstract

We present an analysis of the phenomena occurring whenever a level crossing
is encountered. Besides Landau-Zener transitions and the quantum nonin-
tegrable phase, fractionalization of quantum numbers and chaotic behaviour

emerge as intrinsically intertwined phenomena.
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In the analysis of essentially any complex system one identifies one way
or another the slow and fast degrees of freedom and the subsequent dis-
course continues using these concepts. However, problems arising from the
occurrence of so-called level crossings are not yet understood and solved in
a satisfactory manner. Hill and Wheeler! gave a rather detailed discussion
of the effects which might occur if a level crossing is encountered during the
time evolution of the slow (collective) variables. Near such a configuration
one often describes the behaviour in terms of the well-known Landau-Zener
transition. However, not so long ago another phenomenon, the so called
Molecular Aharohov-Bohm effect? or Berry’s nonintegrable qua.ntﬁm phase?
was put in evidence. It is peculiar that two such remarkable phenomena
occur under similar circumstances. Level crossings should be paid more at-
tention than usually is done; at least one reason is that they are encoun-
tered very often'®~7. Dissipation and the ever elusive quantum chaos are
likely to be manifested due to the existence of real or avoided level cross-
ings. On the other hand, the standard theory of (large amplitude) collective
motion* never explicitly treats these phenomena, even though microscopi-
cally computed quantities (inertial parameters, potential energy) are rapidly
varying/singular in the vicinity of avoided/real level crossings. We analyse
in this paper a very simple model, which, in spite of its simplicity, it em-
bodies the essential physics of the phenomena taking place at or near a level

crossing.



Let us assume that there are three slow degrees of freedom Q, P, whose

motion is governed by the Hamiltonian

H=

2 2032

2PM + 5L ()
with a large mass and small angular frequency. Most of the time we will
treat the slow variables as classical, however this approximation can be easily
improved either at the semiclassical level or even quantum if necessary. On
the other side, the fast degrees of freedom will be treated in a reduced two-

dimensional Hilbert space by the Hamiltonian
1
h= EKQ o, (2)

where & is a coupling constant and o are the usual Pauli matrices. This
particular form of the Hamiltonian(s) will not restrict the generality of our
conclusions. The standard approach is the Born-Oppenheimer approxima-

tion. Let us assume that the slow degrees of freedom evolve as
Q(t) = Qo(sin(wt), 0, cos(wt)). (3)

We have chosen this particular form for two reasons: i) one can solve exactly
the time dependent Schrodinger equation®?, ii) in this case the Berry’s gauge
potential is identically zero, even though the quantum nonintegrable phase
is nonvanishing. Formally, the quantum problem is identical to the motion

of a spin 1/2 in a uniformly rotating magnetic field in the zz-plane. We shall



represent the quantum state by the density matrix p
1{ 142 z-1y )
p_E(:r:+iy luz)’ (4)
where r = (z,y,2) = Tr(pe) are real, with r? = 22 4 4% 4 22 < 1 (equality
for the case of a pure state only, p* = p). Assuming that initially z = 1

and constructing the solution of the time-dependent equation ip = [h, g] as

a power series in ¢, one readily obtains that

1 1 1
z(t) ~ Ewt3, y(t) ~ —-Ewt’, 2(t) = 1-— §w2t4, (5)

if Qo = 1 (this amounts only to a redefinition of the time scale), which
should be compared with the standard Born-Oppenheimer approximation

([A, p] = 0 — r(t) = (sin{wt), 0, cos(wt)))

2(t)wt, y(E)=0, #()~1- %w%? (6)
The difference between Eqs. (5) and (6) are at least unexpected. Instead
of following the driving field, the quantum state lags behind and moreover

it moves in the Hilbert space at first into an unexpected direction (y). The

exact solution is in this case

2(t) = sin(wt) + {—“’—2 sin(ut) - 52 [Si“(ﬂ twit | sin(@ - “’)t]} , (Ta)

Q2 Q4w Q—w
y(t) = zleos(@2e) - 1], (76)
2(t) = cos(wt) + {—g; cos(wt) — 2:_';2 [cosg(ln++w“’)t _ Cosg(lﬂ_—w“’)t] } , (Tc)
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where O = 1 +w?, One can characterize the motion of r as precession (with
frequency w) plus nutation {with frequency §2). One would expect that the
ATDHF theory * shall apply if w <« 1 (the splitting between the two levels
in these units is exactly one for w — 0). In Refs. 4 it was shown that one
can define collective coordinates and momenta by introducing the following
representation of the density matrix p = exp(ix)po exp(—ix), where both po
(generalized coordinate) and x (generalized momentum) are hermitian and

time-even. In the present case (r =1, rg=z?+ 2?)

pozi(rﬁz 2 ) x=ar<:_siu(g_)_(—:c : ) ®

2r \ = ro— 2 2ro z -z
Even though the collective velocity is small when w < 1, its frequency is
of order { (the collective velocity is proportional to y(t)). Similarly, the
collective coordinate py has high frequency components beyond the 0-th order
in w. Also, as one can see from Eqgs. (7-8), a straightforward expansion in
w is meaningless (one can not simply retain terms of up to order w?), since
the slow and fast modes are intertwined in a nontrivial way. In studying the
collective motion, one is interested in situations where wt ~ 1, which enters in
a rather complicated way into the arguments of the trigonometric functions.
In the ATDHF theory there is, however, a rather subtle prescription on
how to pick the “collective path”*. One should solve instead of the equation
[2, po] = 0 a slightly modified one (cranked HF). (We tacitly assume that such
a procedure was already used to “derive” the collective Hamiltonian in Eq.

(1). Consequently, our discussion applies, in particular, to the interaction
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between the ground state and one excited bands or two excited bands near a
funnel® or a diabolical point®.) In the present case this amounts to going to
the rotating frame, i.e. [h—w/20,, po] = 0. For such a choice of the collective
path the amplitude of “nutation” is vanishing and the “spin” is enslaved by
the “magnetic field”, but it is slightly out of the plane zz (see the similar
case treated in Ref. 9).

The above solution deserves a lengthier analysis. We shall only mention
that the Landau-Zener effect comes from the solution of a similar problem,
with the only difference that one considers one slow coordinate and one pass
near the level crossing, which will correspond to such situations as fission
and dissociation. Our analysis is characteristic of bound collective motion
instead. We shall now proceed to the analysis of the full system, i.e. coupled
slow and fast degrees of freedom. For the sake of simplicity of the analysis we

shall assume that the motion of our system is governed by the Hamiltonian
1., 2y . 1
H=§-(P +Q)+§Q-€r. (9)

Constants like inertial parameter of the slow variables, w, & can be absorbed
easily into Q, P and ¢ through an appropriate redefinition of the units and
canonical transformations. The fact that the coupling Q - o vanishes at the
same point where the potential Q?/2 is centered can be easily modified, as
well as the form of the coupling and/or of the potential, without essentially
modifying our sﬁbsequent discussion. If one treats the slow variables as

classical, the equations of motion for this system can be derived from the
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following Lagrangian'?

£=P-Q+m—z+%%— %(P’+Q’)+%Q-r]- (10)
Here one can see the appearance of the “effective gauge field of a Dirac
monopole” %12, which, when integrated over a closed loop, is the exact quan-
tum nonintegrable phase?®, which modifies the Bohr-Sommerfeld quantiza-

tion rules®1%1213, The equations of motion are
. . 1 )
Q=P, P=—Q—§r, r=Qxr. (11a,b,c)

In this form they can be thought of as fully quantum, if Eqgs.(11a,b) are in-
terpreted as Heisenberg equations of motion for the corresponding operators
(Eq. (11c) is already the Schrédinger equation i = [k, p] in a disguised
form). One can safely say that the above equations describe the “correct”
time behaviour of an arbitrary quantum system near a level crossing. It is

easy to establish the existence of the following integrals of motion

r=/z?+y? 4 22, E=%(Q2+P2)+%Q-r, J=Q><P+—;»r. (12 - 14)

In the case of a pure state for the fast variables » = 1 and the first integral of
motion simply expresses the conservation of the norm of the wave function.
The second integral of motion is nothing else but the total energy of the sys-
tem. The last integral of motion has a most unusual structure. It looks like
the angular momentum for the slow degrees of freedom, except for the last

term. If the slow motion is quantized J is half-integer. (If the fast modes are
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in a mixed state, then r < 1 and consequently J becomes fractional/real.)
J also has the right commutation relations expected from an total angular
momentum operator. In the space (z,y, z) (or py in other words) there is a
well defined symplectic structure!®, the Poisson brackets are defined!0-13 and
r/2 behaves like an angulé.r momentum quantity. Upon quantizing the slow
variables one obviously obtains the right commutation relations for the “or-
bital” part of J, while for r/2 one has to retain the “classical” commutation

relations. However one can (re)introduce the usual Pauli matrices instead of

r as well.

These equations of motion display some unusual discrete symmetries.

Time reversal invariance can be defined in several ways:
(Q,P,l‘) - (_Qrpa —l‘), (15)

(Ql, @23, Py, Pz,s, z,Y, 2) - (—Qh Qz.a, P, ~Py3,—2z,y, z), (16)

up to obvious permutations in Eq. (16). Parity invariance also can be defined

in several ways:
(Q,P,r) —» (Q,P,r), (17)
(Q1, @23, Pr, a3, 2,9, 2) — (Q1,~Qs, Py, —Pag, x, —y, —2), (18)

with again obvious permutations in Eq. (18). It seems that the enumerated

cases exhaust all possible situations.
A standard adiabatic solution of Eqs. (11) has as a conserved quantity

only the orbital part of the angular momentum. This leads to the fact that
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the collective trajectory is planar. In the exact solution, the trajectory is
not anymore confined to a plane and can become chaotic. Chacticity was
observed in triatomic molecules, which are described by similar equations
of motion, with the only distinction that there are only two slow degrees of
freedom!*. If one describes a situation where the collective trajectory never
comes close to the level-crossing, then Q dominates over r/2 in Eq. (11b) and
the orbital angular momentum is approximately equal to the total angular
momentum. However, whenever a trajectory has a low impact parameter
with respect to the level crossing, the orbital angular momentum can be
comparable in magnitude with r/2 and the trajectory becomes essentially
chaotic. The normal to the instantaneous trajectory plane can be anywhere
in a solid angle 7(2J — v4J?2 Z1)/J,if J > 1/2, r =1, centered around J.

Negele!®, in his ITDHF analysis of the fission of S3? into two Q16 nuclei,
displays a collective path in the quadrupole-octupole space, which has exactly
the type of characteristics one should expect, in the light of the present dis-
cussion, from the presence of a level-crossing. To understand Negele’s result
one probably needs two collective degrees of freedom only. This will amount
to replacing the vector J with it’s “third” component, if the Hamiltonian for
the slow variables conserves the orbital angular momentum. In the absence
of such a symmetry one still has to consider an equation of the type (11b)
for the slow momenta, where the presence of “fast coordinates” will modify

in an essential way the dynamics. As far as we are aware, this calculation is



the only one available in nuclear literature, where the fast degrees of freedom
were treated without any constrains and as a result the presence of the level
crossing manifested itself in such a striking way.

We find it remarkable that so many features, namely the Landau-Zener
transitions, fra.ctionaiiza.ti.on of quantum numbers, occurrence of dynamically
generated gauge fields (effective Dirac monopoles) and chaotic behaviour
emerge in the framework of this approach. Even though we most of the time
refer directly to nuclear dynamics, it should be obvious that our discussion
covers a larger range of physical situations.

We thank W.Bauer, G.F.Bertsch, P.Danielewicz and D.Kusnezov for dis-
cussions. Support was provided under NSF Grant No. 89-06670.
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