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Abstract

Formulas for particle correlation functions and cluster
em ssion probabilities are derived in terns of the single-particle
phase-space density and production rate that are avail able from
the popular dynamic nodels relying on nucleon degrees of freedom
and nucl eon-nucl eon collisions. The expressions can be used to
calculate the production of A > 2 clusters from the dynamc

model s. Koonin's formula is obtained as a special case.



Correlations between particles emitted with low relative
momentum from heavy-ion reactions have been studied extensively in
recent years [1]. Detailed data are available on proton-proton
pairs, other light-fragment, as well as pion pairs. From the data
one expects to learn about the development of the reactions in
space and time [1] and on temperatures reached in the
collisions [2,3]. When determining the space-time structure, the
data have been typically parametrized in terms of Gaussian
sources, with coincidence cross sections given by a convolution of
the two-body wavefunction with the sources [4,5]. The process of
correlated emission is related to that when particles are emitted
as one cluster. Formulas involving convolutions of cluster wave
functions with the single-particle density matrices, have been
used to describe the light-fragment production [6].

The single-particle features such as proton spectra are quite
well reproduced by the dynamic models relying on nucleon degrees
of freedom and independent nucleon-nucleon collisions [7-9]. In
the past, Remler et al. [10,11]) have devised a procedure for
calculating the deuteron production from the models. Pratt
et al. [12,13] applied a formula proposed by Koonin {41 to obtain
the nucleon-nucleon correlation functions from the dynamics.
In this letter we derive relations of the coincidence cross
sections, and cross sections for fragment emission, to the
quantities that are calculated in a quasiparticle limit in the
dynamic models [7-9]. We generalize a result of Remler et al. and

we derive the original Koonin formula.



We begin with the following representation of the probability

density for detecting A free nucleons or a cluster from an event:
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av = t11m T Idxl...dfodxl...dxA
3 w
{(-)* (=) o, .
x & (xl,...,xA)@v (xl,...,xA)
x <¢T(x',t)...wf(xi,t)W(xl,t)...w(xA,t)> . (1)

Here v stands either for the momenta pl,...,pA of individual
nucleons, or the center of mass momentum P of a cluster, in
conjunction with any discrete quantum numbers; the éih) is an
antisymmetrized wavefunction with outgoing boundary conditions for
the case under consideration. An operator wT(x,t) in (1) creates
a particle at time t and position x. Spin-isospin indices are
suppressed. The expectation wvalue in (1), divided by the
factorial, is a time-dependent A-body density matrix. This 1is
a reduced density matrix of the full evolving system. The
relation between the probability density, averaged over impact

parameter, and the cross section o, is

ar _ 1 99 2)
dv "¢ dv '
where ¢ 1is the reaction cross section. For a fixed impact

parameter, a correlation function [1] is obtained directly

from (1).

We shall transform the expectation wvalue in (1) using the

equation of motion
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where the Laplacians act on unprimed coordinates, and V represents

static two-body interaction. Tt can be shown by induction that
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where

j(x) = [w(x),v] . (5)

When inserted into (3), the first term from the r.h.s. of (4)
vields interactions only between the particles from the reduced
density, while the second term with the operator j yields, in
general, coupling to an additional particle in the system. We use

JA to denote the second sum on the r.h.s. of (4), and we rewrite

eq. (3) as
V2 v2
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On considering the arguments of operators ¢+ in (6), and on

introducing the retarded and advanced A-body Green’s functions G;i

that satisfy
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where ¢ are permutations of A indices, we obtain
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The functions g% may be decomposed in terms of a complete set of

normalized A-body states v with energies Ev:

g
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On combining (1), (8), and (9) we get
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Equation (10) is a direct generalization of a formula for the



one-body case that can be found e.g. in ref. [14]. A similar
structure as in (10) has also been given for the elastic
scattering of composites off nuclei [15].

In order to obtain a calculable expression from {10), we

introduce the following approximation:
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With (11), the expectation value of the product of A-body sources
becomes
<JTJ > = X sgne z <jT(x' tr)jd( t)> " <wf(x' ' )yix,, t)>
a’a> = o(k) = 73 Xy TOE e
o k k=¢
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In the quasiparticle limit that underlies the dynamic models of

collisions [7-9]), the factors are

<WT(X’,t’)W(X,t)> = J—ff—g f(p:R,T) eip(x-x’) e—igp(t-t’) (13)
(2n)

Here f is a Wigner function, &y = ep(R,T) is single-particle

energy, and R = (x + x')/2, T = (t + t'}/2. The expectation value

of the product of single-particle sources <jT

j> may be expanded
diagrammatically in terms of <wTw>, <¢¢T>, and the interaction
[16,17]. The irreducible part in the expansion, containing no
single particle lines,

<h@otnimes> = ghaenimes o+ ..., (14)

is identified after Wigner transformation with the single-particle

production rate -if“ in standard notation [16],
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For w = cp the production rate multiplied by a blocking factor is
identical with the gain term in kinetic egquations [9,16]. The

other terms in the expansion (14), cf. ref. [(16], are associated

with the propagation following production. On using '<jTj>inmd
for <j'i>, we get from (10), (12), (13), ‘and (15),
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Here Pv is the momentum of state v,
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v - v o1l T TTA o

g, is the Wigner transform
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and we use tilde to indicate the Jacobi coordinates and conjugate
momenta,

X, =



Pp = (kpp g - (@ + ... + D)/ (k + 1)
Finally, the production rate in the kinetic models [7-9] is [16]
I dp, dp’ dp
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As it stands, eq. (16) does not include the possibility of
absorption due to further interactions following the production.
This can be accounted for by summing up the other terms at the
r.h.s. of eq. (14). We postpone the full derivation to a future

publication, and quote only a final expression that is an obvious

generalization of eq. (16},
d? _ afat[ax, ...ax, [ac [ax:...ax: 27" (x X, t)
dv ~ 1°°""""A 1°°"""A xv 17" ""Aar
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Here the wavefunction is
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The function G; satisfies a more general equation than (7) and

x(‘) satisfies a more general equation than @(_), by inclusion of

a time-dependent, generally nonlocal, complex optical potential

for individual nucleons:



Z =Re I + ir'/2 . (22)

The sign of the imaginary part is such that the norm of the
wavefunction decreases in the propagation backward in time,
2% = Jo}?.

Equations (16)-(20) constitute the main result of this
letter. In contrast to some expressions in the past, ours have
been derived without reference to ad hoc quantities. The
expressions involve no adjustable parameters. The production rate
for the A-body state is given by a product of the single-particle
rate and the single-particle phase-space densities for particles
that are already present, which we consider a natural result. The

substitution of

€ + € + ... + £ (23)

for Ev in (16), exact when ¢ 1is a plane wave, yields direct
extension of the gain term in the approach by Remler et al.
[10,11] to correlations (see also ref. [18]), and to other
fragments than deuteron. Remler et al. have obtained their result
from the consideration of discontinuous changes in nucleon
velocity, in an analogy to that how one obtains a photon
bremsstrahlung cross-section.

In general, the single-particle rate in {16) is evaluated off
the energy shell. Following a collision the nucleon is off-shell
and may form a cluster with other nucleons. The other nucleon in
the nucleon-nucleon collision, c.f. eq. (19), acts as a catalyzer

permitting the energy and momentum to be conserved. Further



discussion of interactions with several particles in the initial
state is given in ref. [19]. 1In equilibrium, a thermal occupation
factor can be associated [16] with the single-particle rate,
sharing with the rate the energy-argument. Using the cluster
wavefunctions [20,21), we can determine temperatures T = Ye - E, .
above which energy conservation in the coalescence of nucleons
into clusters ceases to matter. We get 20 MeV for d, 70 MeV for t
and 3He, and 140 MeV for . Appearance of a thermal occupation
factor can be shown in equilibrium directly for <J;JA>, and is
important for Jjustifying the temperature determination from
resonance yields. Equation (20) shows that the interaction
product (s) can be deflected by the mean field or absorbed on the
way to detectors. For the correlations, the medium acts as
a dirty lens.

An appeal of egs. (16-21) is that the equations follow from
a direct microscopic derivation and are amenable to
an implementation into the existing dynamic codes. For the first
time it is possible to calculate the production of A > 2 clusters.
The codes provide the nucleon Wigner-functions at all times, the
off-shell (if needed) rate can be calculated with minor
modifications to existing procedures, and optical potential for X
can be obtained as well. Optimally, the effects of optical
potential can be estimated along a classical c.m. trajectory of
the nucleon set v. A simpler procedure would just consist in the
use eq. (16) with those emission processes where the particles

from the set do not collide any more in the reaction.
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The formula proposed in ref. [4] may be derived from
eq. (20), following a set of approximations, giving additional
insight into the equation. The necessary approximations in (20)
include the quasiparticle approximation for the c.m. motion of p
with the internal state unaffected by the exterior,
the approximation (13), and, after the integration over
microscopic time and space variables, the substitution of (23) for
Ev . and PV/A = p for Py in £ and z‘, under the assumption of low
relative momenta. Further, the values of f are obtained from the

integration of production and absorption in the past along

an assumed straight-line trajectory,
£BRT = [ ar (-i)35° (B, e5RR (T -m) )
-

T

x exp[— dr" F(ﬁ,eﬁ;R+%(T“—T),T“)] . (24)

TI
The norm of the wavefunction for v can be found from integration
of absorption from the future towards the past, giving, after

symmetrization of the times,
a? _ (ar, [ar dar, [aR, D(P;R,,T,)...D(D:R.,T.)
dv ~ 1 1°° AlTA L el *TAT A
= 5 2
x lo (By, .. By )17 . (25)

Tk . and D is the distribution

=1L

The variables for ¢ are Z, = Rk -

of the last collisions of particle

n

, in time, space, and momentum,
or otherwise the representation of the sources as seen from the

outside through the medium
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D(D;R,T) = —iz‘(i,eﬁ:n,'r)
.,, ) -
X exp[—I dr’ I‘(p,e—;R+g(T’—T),T’)] ' {26)
T pm

here in the absence of rarefaction. Note that an expression such
as (26) cannot be obtained by simply Wigner transforming the
expectation value exhibited at the 1.h.s. of (14). The structure
of (25) is easiest to comprehend when ignoring absorption.
Starting from (16) one then directly arrives at (25). Explicitly,
the steps in the derivation of (25) with (26) will be given in
a forthcoming paper. While our derivation relates the function D
to the single-particle rates -iX*~ and I, the distribution is
actually readily available from the existing dynamic codes [7-9].
In the case of two-particle coincidence cross section, eqg. (25)
reduces to the equation proposed in ref. [4]. We think that our
derivation of Koonin’s formula is more fundamental than the one in
previous work [13]. Other than for the calculation of correlation
functions, eqg. (25) can serve to give a rough estimate of the
A = 2,3 cluster production in high-energy reactions.

In order to obtain expressions useful in the description of
cluster-cluster correlations, or e.g. the production of a cluster
by a lighter cluster picking up more nucleons, one needs to go
beyond the approximation (11) and isolate the few-body
densities [19]. Also one needs to go beyond (11) to take into
account the dynamic effect of a catalyzing nucleon onto the A-body

rate. For clusters, the effect can be estimated from the cluster
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. . . 2
breakup cross-section, on substituting IAN...NAMNI for
2 . . .
IiMNNaNNI g, in (16), see ref. [19]. The effect can be quite
sizeable for low relative energies.
Concerning egs. (1) and (10), one should mention that one

might consider expectation values with more time-arguments than
in (3), with a reduction resulting in more single-particle
sources, and the wavefunctions of Bethe-Salpeter. For A = 2 there
is no advantage, as an isolated particle can only survive when on
the energy shell for macroscopic times. At least in principle,
the procedure might have some advantage for more particles,
because one could describe the buildup of correlation between the
particles before the last one is emitted.

To conclude, we have given here new formulas for calculating
the probabilities for emission of a set of nucleons with definite
momenta, and for cluster emission. The formulas reveal
microscopic aspects of the emission, and they stem from a more
fundamental derivation than the expressions used in the past. It
should be mentioned that the case of boson emission goes very much
along the same lines as the case of fermion emission, although
care must be taken of the generally relativistic aspects. A more
detailed study of the subject and numerical applications are in

progress.
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