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1. Introduction

Nuclear optical potentials are of continued theoretical and experimental
interest. On the theoretical side, the calculation of in-medium
cross-sections and the inclusion of collective phonon excitations is of prime
interest. Though there exist 'standard’ many-body techniques for calculation
of optical potentials (mass operators) 1'5), there have been recently new

developments reported 6

). In this work, we continue along these lines, and
derive new formulas for the optical potential of elastie nucleon and deuteron
scattering. We treat the particle-hole (phonon) self-energy in a consistent
manner. We concentrate on the formulation of the imaginary parts of the
optical potentials. The corresponding real parts are in principle determined
via dispersion relations. It should always be possible to write the diagonal
elements of the imaginary potentials in a golden-rule form; their definite
sign is then ensured. Expressions that cannot be arranged in such a form had
been used when attempting to include the phonon excitations. Due to
antisymmetrization, overcounting problems occur which are partially cured by

subtraction procedures 1’2’7’q).

As a consequence the imaginary potential can
at least in principle acquire a wrong sign (flux is produced rather than
absorbed). In this work we show that the collectivity may be put into the
vertex functions without loosing generality. The proper sign of the imaginary
potential is then guaranteed, as the diagonal elements are indeed of the
golden-rule form.

In sect. 2 we first treat the nucleon-nucleus potential in quite detail.
In sect. 3 we generalize the results to the particle-particle and

particle-hole self-energies. Finally in sect. 4 we confront our new formalism

with commonly used procedures and give a critical assessment.



2. Single-Particle Potential
The nucleon-nucleus optical potential can be identified with the mass

operator appearing in the Dyson equation for the single-particle Green's

funetion

0

¢ = 6%+ ¢, (2.1)

where

itV - -1<ott{u, (6)ol, (s} 105, (2.2)

and GO is the Hartree-Fock propagator.

Being concerned with the imaginary part of the potential, we write 8’9)

Im M:;E' s Im -i(OIT[J1(t)J:,(t')]lO)irr
-] <o|[31(t),3§,(t')]|o>irr, (2.3)
with
= [¢1,§]. (2.4)

Explicitly the mass operator is

t-t' i t t ot | -
MT]' = - i V123u <0lT[(w2¢3%)t(¢4'w3'¢2')t'}IO)irr V3,u.1'2, ' (2.5)

where v123u is the antisymmetrized matrix element of bare interaction, and

t-t! 1

t t 1
Im M1‘|i = = -g V123u (Ot[(w2¢3lbu')t’(¢“'¢3’¢2')t']lo>1r‘[‘ V3|4'1'2|. (2.6)

From eq. (2.5) we see that M is related to the irreducible 2p-1h (2h-1p) Green

function,

. t t .1
Rizgrrargr = ~1<OIT{b 00005, 05, 0, HO>, (2.7)

irr ?

and we further write

t-t' > t-t! < t-t!

i
Im M11' =T §-V123u (R23ﬂ2'3'4' + Rg3“2l3'q|) V3|q|1|2. ' (2.8)



where
1R, 578 e = <ol (b, Tuou), wlouh v, ), 100 (2.9a)
12311231 1 Y2737 PT3 2 gt irr ? )
and
< et t .1 1
-—1R1231|2|3' = <0|(¢3,¢2.¢1.)t.(¢1 ll)2¢3)tt0>ll"l" . P (E.Qb)

Assuming a weak damping of 2p-1h (2h-1p) states, the functions (2.9) can

be represented as

o> t-t! L L% -iQ (t - t")
1Ryo39vpr3e = EE L%123%112130© ; (2.10a)
-iQ (t - t")
o< b=t L L!I' 1 L
—1R1231|2|31 = 2{ NL 123 1'2'3'9 N (2.10b)

Here EL are the wavefuncticns and QL are the energies of the correlated
states. From general thermodynamic considerations 10), ﬁL = 0 for QL < e and
NL = 0 for QL > €ps in the ground state of a system, where €p is Fermi energy.

We can further assume that the states are normalized so that ﬁL = 1 for QL >

€p and NL = 1 for QL < gpe Then eqs. (2.9) and (2.10) yield the completeness

relations
o
E 123 1" 2'3' - 1n2n3 11! 2(822! 33! - 623|832|) ) (2.113)
QL>€F
L _L* - 1
E H123“1'2'3' - n1n2n3 6'}1'2(622l633l = 52318321) ) (2.11b)
QL<EF

where n are occupations of the single-particle states in the shell model,

n

1 - n. Upon introducing a dual system of functions £ such that

=L* _L' LL!
"123%123 7 0 o (2.12)
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and summing eqs. (2.11) side by side, we can obtain the normalization
condition

~] % P '
=L gL' GLL

_123(n15253 + ﬁ1n2n3 5023 . (2.13)

The 3-body wavefunctions = and the energies of the states can be searched for

[H

by solving the 3-body wave equation from ref. 11) (see also ref. 6)),
L 1 L
(G + €y~ € - €305 - 5(1 - ny - n3lVa3213:E1003
_L _L )
= (g =m0 B ipig - (g - nalayiy3i8yip30 = 0 (2.14)

where £ are the shell-model particle-energies. On substituting eqs. (2.10)
into (2.8) we find for the diagonal elements of the imaginary potential in the

energy representation
ImM=-2F v 5. 1| - N) sw-0) (2.15)
T T2 L WoagyTagy ! (L - Ny ERAE :

Some further insight into eqs. (2.3), (2.6), and (2.15), may be gained by
using the zero-temperature limit of finite-temperature theory to calculate the
expectation values at the r.h.s. of (2.3) and (2.6). Two methods for
calculating the expectation values exist. In appendix A we provide basic
information on the method that yields chronological functions (such as in
egs. (2.2), (2.5), and (2.7)) in the amplitudes in the expressions for the
expectation values. Details may be found e.g. in appendix C of ref. 12).

The other method 6) utilizes retarded functions in the amplitudes, and it has
some advantages at finite temperatures and in nonequlibrium situations over
the first method, as.will be indicated. Unless explicitly stated, we use the
more common chronological functions. We find

1=~ F ¥iag (G G330 Gy,

> < < *
200 G33, Guu,) N1,2,3,4, + ee _ (2.16)

im M

+ G



where

- -1<0|¢1¢'§.to>, (2.17a)

—
Yy
-
]

and

G

" 1<0|¢’{,m1|o>. (2.17b)

The vertex function can be written in terms of R as

1 -1 -t -1
Wi234 = 3 Vise7 Rse7ar3rye Gopr G303 Gyey - (2.18)

The time-arguments of W are in general different from one another. The same
holds for the right-hand time-arguments of R. The dots at the r.h.s.

of (2.16) indicate contributions from the 3p-2h and 2h-3p states that are
products of single-particle states, and such states with a still larger number
of partiecle-hole pairs.

The result of the form (2.16) is valid at finite temperature when the
expectation values that determine the functions in (2.3), (2.5), and (2.17),
are taken with respect to the equilibrium density operator 6). A complete
contribution of the 2p-h and 2h-p states to the imaginary part of the mass
operator is obtained, though, in that case, when the retarded rather than
chronological amplitudes W are used 6). The difference vanishes at zero
temperature,

In the shell-model approximation we have

-ie {(t, - t!)
6. = -if. & L

119 1 8490 @ , {2.19a)
and

-i€1(t1 - t;)
Gyqr = iny 8., , (2.19b)
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where the ground-state occupation n is 1 for a state below Fermi surface,
and 0 above; n = 1 - n, On inserting (2.19) into (2.16), we find for the
diagonal elements of imaginary potential in the energy representation,

~ Ty 2 - - .
ImM ¥ < é|w123u| (n2 n3 ny - n, n3 nu) §lw + €, - 53 - EH)' (2.20)

We should, of course, be aware of the fact that the shell-model states

in (2.20) may themselves have a decay width and/or have a reduced strength
(Z-factors less than 1), We want to ignore such refinements here and rather
concentrate on the vertex function W. With the help of the Watson-Fadeev
series expansion of the 3-body propagator involved in (2.18) [refs. 9’”’6)],
we can expand W in a series of pp and ph T-matrices. To lowest order W can be
approximated by a pp T-matrix (a Brueckner T-matrix could be used,

a Feynman-Galitski T-matrix, or any more sophisticated version thereof).
Low-order terms of the expansion are shown in fig. 1, and the second equality
indicated in the figure follows from an integral equation satisfied by the
T-matrix (the dot stands for V1234)‘

A subject that we want to particularily dwell on in this work, is how to
incorporate collectivity from low-lying collective-states (including giant
resonances} into the optical potential. For that purpose we add to the terms
indicated in fig. 1, the next terms in the series, see fig. 2. The ph

T-matrix satisfies an integral equation

Ph

_ ¢bh ph h
1234 = K ik

p
1234 = 123'“!G3ﬂ3i641u"T3"u"3u

ph ph ph
K123Q + K123|Q|n3|ur3nuuK3nqu3q L (2.21)

that can be directly derived from the Bethe-Salpeter equation for the ph

propagator 13,14),

m=n° . %Py, (2.22)



where explicitly

Myppipe = -1€01T{8p,, 800, 1, }(0> (2.23)

6p12 = ¢£¢1 - <0{¢;¢110>, and Kph is an irreducible kernel (mass operator in
the ph channel). With this we can now write the expression for the vertex

function indicated in fig. 2,

Wiogylt - t")
-igy(t-t')
- 7PP ' pp H ' ph
= Tipgydlt - £') + Tiai3ey © Mig1omgult = £) Knguag
-ie (t-t*) 7
pp 3 ph
* Thargye @ Byiyrpuyn(t = ) Konpuny - (2.24)

Here we assume that TPP and Kph are energy independent (the dependencies on
the relative times may be expressed with the § functions). We choose for
convenience the time representation since the forward- and backward-going
contributions may be written concisely. Equation (2.24) together with (2.20)
is the basic result of this work. Collectivity is accounted for via the
density-density correlation function (2.23) which is available from extended

15’16). For the interactions TPP and Kph there exist

RPA calculations
parametrizations based on'Brueckner calculations and corresponding Landau
parameters, respectively. Skyrme-like forces might be used at low energies.
It should then not be too difficult to evaluate (2.24) numerically. The
definite sign of Im M and correct Born limit are guaranteed in this case (see
also discussion in sect. 4).

We now want to make connection with formulas more commonly used for
including the collectivity. To this end we carry out.the following

consideration. In the energy space we take the ph propagator in its spectral

representation:



v _v¥ vy
I . XiaXprar —  Xa1 Xory (2.25)
212t T L W e Ir72Tusq - ir 72 '
Q >0

The states in (2.25) may e.g. be calculated in the RPA approximation,

The widths Pv are supposed to come from coupling to the continuum étates and
from the coupling to the low-lying collective and single-particle states.

Let us examine a term entering the mass operator, taking the first term at the
- r.h.s. of (2.25) and putting it into (2.21), and further into the second term
at the r.h.s. of the equality in fig. 2. Using a shell-model approximation
for the single-particle Green's functions and isolating few (collective)

resonances in (2.25), we get a contribution to Im M, ignoring interference

terms,
L L 18 a1
12!3!1‘ 2|31
1 {' Z ; 2'3" | [ v¥ _ph 2 -
- X K vanl NN
L v 234 4 (w - €y - Qv)2 + rsxu 2130 203" 2n3na3 23

x 218{w + €, - £y - Eu) . ‘(2.26)

The prime on the sum indicates that the sum runs over the few states.

The quantity

* h 2 -
Z l X XU" nKpn woal TN, 288{w + €, - €, - €,) (2.27)
23 2iign 2"3nTan3n23 273 2 3 y

is recognized as the decay width of the state v into the ph states. To the
extent that these widths constitute most of the widths of the states, we get
the following contribution to Im M

rv/21

1 ¢! pp vV 2 -
‘22v§3u'T123ux23' ny

Qv>0

L (2.28)
(w - g, - 0)% « 2/
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The dots stand for an analogous term coming from the backward contribution
involving the second term at the r.h.s. of (2.25). The overall factor of 2
in (2.28) accounts for the second term at the r.h.s. of equality 1ﬁdicated in
fig. 2, and further the third term that yields an identical contribution to
Im M as the second tern,

Using the direct terms from the expansion of W indicated in fig. 2, we
are n6w able to give a formula for Im M which resembles that in common use

1,2

when dealing with collectivity '©):

ImM = '2|T1234| (n253ﬁu - n n nu)a(m + ey - €3 - eu)

X { Pv/2ﬂ
] kid Xo
Q >0 v v
v
r /2a
pp _v% 2 v
- |T123” 32| nu ] + e . {2-29)

(- e, +0)% 4+ 12
The dots in (2.29) indicate eventual interference terms and smooth background
from the remainder in fig. 2.

We see that the contribution of collective vibrational states to the mass
operator can either be put into the vertex function as in (2.24), or (as is
usually done), following certain approximations, more directly as intermediate
states as in (2.29) and as is displayed in fig. 3. We emphasize that the
prime on the summation sign indicates the inclusion of isolated collective
states only (see the more detailed discussion on this point in Sect. 4.
Equation (2.29) is similar but not identical with the formulas in use., For

instance note that expression (2.29) is of definite sign for w below or above

the Fermi energy.
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The form (2.29) could have been obtained in another way. A resummation
in the diagrammatic expansion can be used to obtain still a representaticn of
the imaginary part of potential other than (2.16),

1 > G

Im Mg = § Fyogy (Mygpige Gy + "232'3' Gyyr) F1'2'3 e ¥ o-ee o (2.30)

Here the vertex function is

. ! -1
Flosu = 3 Vaser Pegrargrys 1 213123 Gyry » (2.31)

and further

> -, 1
H121l2t = “1<0|8921592t1||0> ) : oo (2.32)
and
< >
n121|2| = H2|1|21 y (2.33)

ef. (2.23). Inserting a complete set of states we obtain

-iQ (t - t")
> t-t! *
Motae = -0 X, Wiy e : (2.34a)
v
and
i (t - tY)
< tet!
Tioyeoe = iE X21 Xpiqe € ' (2.34b)

We consider the resummations that lead to (2.29) involving any of two ph
pairs. We approximate the vertex-function F with the matrix TPP and ignore
the energy dependence of the latter. 1In consequence we find from (2,29)

and (2.34) the contribution of a collective state v to the diagonal element of

imaginary potential in the energy representation:

v 2 -
-1 755y Xo3!” Myl - Q) - ¢p)

. nl7fl, x§2|2 nydlw + 0 - ) . (2.35)
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For small values of I‘u this expression is the same as the one found in (2.29)
where it adds to the incoherent contribution of Im M,

At finite temperature we have n = 1/(exp(8(¢ - u)) + 1), where B is
temperature inverse. MWe use eq. (2.24) with the retarded propagator

+
R PYIPY

X12Xq1 00
- g W - Qu + in/2 ! (2.36)
obtaining a contribution to Im M of the form (2.26). However, the quantity
(2.27) does not represent now in general the width of a state, but instead the
decay rate for Qv > 0, and the production rate for Qv < 0. The rates are
related to the width with a factor ﬁv = sgn Qv/(1 - exp(-BQu)). For the

imaginary part of the mass operator, we get

ImM = §|T 234' (n2r-13ﬁq - n n nu)S(m * €y - Eg - EH)

2 . Fv/2ﬂ
- “z (1795 54x55 1< By,

2 2
{(w - £y - Qv) + I‘vﬂ-l
5 Fv/2u

- TP xv 1“ n,N J+ .., (2.37)
12347327 Wl ey + @)% + T2/

with N = sgn Qv/(exp(ﬂﬂv) - 1).

Although the expressions (2.29) and (2.35) are more representative for
what is common in evaluéting the imaginary potential, we shall not advocate
these expressions but rather stick to expression (2.2l) where collectivity is
. put into the vertex, for reasons explained in sect. 4. First let us carry out

similar consideraticns for the ph and pp mass operators.
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3. Particle-Hole and Particle-Particle Mass Operators

We now make similar considerations for the particle-hole (phonon) and
particle-particle (deuteron) mass operators.

The imaginary part of a particle-hole mass operator in a state v may be

written as 1u)

Im KPP V(¢ - ¢)

* 1
ph t-t' v
2 Kyogear X0

Im x¥

~1 " ~
Im 503001 T{ (013, = 70,0 (53000 - 6,370 100, 5,

= - X 5 Vorae8az)
-8 X12'V2356%14 T Vay15°26
.t + 1+
* <O (Uglybsb) o (g g, by 03 ) HlO>,

~y
x (v516l2|3l61tu! - v1|5|3|u182|6|)X1|2| . (3-1)
Here i is a wavefunction dual to ¥,

v ~v
X1z = 20y = ma)Xyp (3.2)
where the upper sign refers to Qv > 0 and lower to Q‘J < 0, with the

~y ¥

normalization set by x12x¥2 = 1. When ignoring the damping of the 2p-2h

states, one can write

<1 (B]03050,) (B 193,0,,0,.,), 10>,

) - -0t - £')
= Y § LIPEN STPIPINT. ) (3.3a)

QJ>0

T o t .t
(0](¢u|w3|¢21¢1l)t|(¢1¢2w3wu)tt0>ir

~-iQ.(t - t*)
J J¥ J
= u ‘[J: 4’123“‘1’1,2,3,“,8 . (3»3b)

QJ<0

r
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]
To every wavefunction ¢J there corresponds a wavefunction ¢J , such that

J L ph '
QJ, = QJ, and ¢1234 = ¢4321 For the imaginary part of K™ one then gets, in

the energy representation,

Im Kph v

--.-vﬂ . J 2. =
= ‘“§ X12(¥235681y = Vay158261¢3y56! Ny + Nj) 8w - Q) . (3.4)

The wavefunctions x might be searched for by sclving a wave equation analogous

to (2.14),
- E, = € )¢J + 1(1 -n, - n.)v $
2 3 4771234 2 1 27712 271234

1 J J
31 = g = myVaugie®igguye = (Pg - 1V3130 g0y

(Q, + e, + ¢

J 1

J
(ng = 005,308 500y = (y - “1’"&1'u'1¢1'23u'

J
e TUNP A PIPTTEL I (3.5)

The completeness relation reads

I ¢ POTU S n,n n,n 1(6 8 = 8.,508,4,)
5 123u 1120304 T Myl 3 4y § %1+ %22 12' 721!
QJ>0

X (533.6”1" - 53‘4'6”3'), (3-6)
and on introducing a system of dual wavefunctions a,lthe normalization
condition can be written as

30 - -
123u(n1 ofghy - n1n2 3 4)¢1234 = 2897, (3.7)

We can further expand diagrammatically the expectation value at the
r.h.s. of (3.1) and apply a resummation as in the case of (2.6), to obtain

phv 1w ¢ a2
= B Tiogy (64048506336
> >

< < v
+ 61-1G2'2°33-¢uu-’ Piigigeye * «ov s (3.8)

Im K

where the amplitude



-15-

v _1 ~y
F123u - 2 x56 (V61|3|u'8521 - v1|2|53|86u|) Y1|2t3|u1]ﬂ2n3u"ﬂ
-1 -1 -1 -1
* Gyyr Gppr G30q Gyuy (3.9)

With the 2p-2h Green function

- Tt LN
Yy oguqipegy = OITHOI0050,0y b3 by, 0, 10>, . (3.10)
In the energy representation we get the contribution from 2p-2h states
phv 3 ._v 2 = = - =
Im K E M|P1234| (n1n2n3nu + n1n2n3nn)
x 8w+ e, + €y - €3 - ey (3.11)

where, to lowest order in Tpp,

Voow oV% PP PP PP pp
Fi23n ¥ X56(Tg13y 850 = Tios3 Sy - Teasy 859 - Tasy 8g3)-  (3.12)

The other important case is that of the deuteron (two-particle) mass
operator Kpp’ see also ref. 17). With ¥ being a two-particle wavefunction the
result analogous to (3.11) from retaining the transitions to 3p-h states,

takes the form

PP _ * PP
Im M5 = Im ¥, Kioqior ¥0g

! 2 - - - =
= 12lhpgy!” (nynyhgny + ninyngny)
x 6(w + €y - €y - €3 - su) . (3.13)

Here the amplitude A is given by

-y
Mazu = 3 ¥56 (V90621300540 + V5100030860
- -1 -1 -1
x D1v2|3iul1n2n3uqn G11u G2n2 G3n3 Gunu ] (3-14)
where ¥ is a dual wavefunction, W12 = (1 - n, - n2)¥12, and

_ 1 t t
1D123u1'213lu| = <0‘T{¢1¢2¢3¢u¢4|¢3.¢2.¢1.]l0>ir . (3.15)

r
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It is important to note that into the vertices T, eq. (3.12), and A,
eq. (3.14), enter the dual amplitudes with the result that integrations run
over the whole rather than restricted phase space, even at zero temperature

My,

[(see also ref.

4. Average Mass Operators of Nuclei

We now want to discuss in some detail the situation 6f nueclei.
In nuclear physics essentially two different formulations are in use to
calculate the imaginary part of the optical potential. The first one consists
in calculating the expression (2.20) in infinite matter using the 2-body
scattering matrix for W and going over to finite nuclei via the local density
approximation 3’5’18).

The imaginary potential from the nuclear structure approach 1'2) takes

the form

| 2 - =
Im M = -5 § Iv1234?gu| (nzNJ - n2NJ) Slw + €5 - QJ)

-1l Viaa¥pgl” By - Mym) 8w - 9, - €)
+ nlv 12 (nonyny, - nonony) 8w + €, - €, - €,) . (4.1)
1234 23} 27374 2 3 Yy

Here the sums run over g;l_two—particle'and particle-hole states and the last
term at the r.h.s. is from subtraction of two second-order contributions to M
that otherwise would be counted three times. When an effective interaction is
used and the pp states are not collective, then the first term at the r.h.s.
of (4.1) cancels one of the second-order contributions, leading to the

result 2’7)

v 2 o —
ImM = -ng |v123ux23l (anu - anﬂ) §(w - Q - eu)
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+ BVt (nyfighy = Bynan,) 8w+ €, = €5 = €)) (4.2)
that is used in practise. The second term at the r.h.s. of {(4.2) still
serves to cancel half of the sécond-order contributions from the first term.
There are inherent difficulties associated with (4.1) and (4.2) that we want
to discuss. The correlation and polarization parts [cf. ref, 19)] of the
imaginary potential should each have a definite sign, é.g. the correlation
part should be positive definite as representing the particle absorption,
This is not the case with the guantities in eqs.r(4.1) and (4.2), as we
explicitly demonstrate on a model in appendix B. This fact, however, seemed
never to cause problems in actual calculations, and it was claimed u'20'22)
that the incoherent part is very small compared to the coherent part.
In general, this statement cannot be right for the following reason.
The incoherent part in (4.2) is up to a 8ign equal to the expression which is
used in the local density approximation (LDA) to the imaginary potential 3’5).
These latter calculations give semi-quantitative agreement with experimental
values. In ref, 23) it was shown that the LDA represents the correct avérage
part of the corresponding quantal expression, It is in this sense that the
second part of (4.2} ean overall net be a small quantity. In the range of
energies where collective states play an important role, it may be small;
however, alsc there things can be more subtle. On examining the response
function 11 = Ho/(l - KHO) in the interior of the nucleus corresponding to
nuclear matter, one finds that the isoscalar interaction acting mostly in the
surface is almost zero there. At the other hand, the repulsive isovector force
(3 =0, T=1) is strong in the interior of the nucleus. So there I is
actually smaller than Ho, and the subtraction in (U4.2) possibly alters the

sign of the imaginary part of mass operator. This is precisely what happened
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in a study 211) involving one of the present authors. This never happened in

a quantal calculation because of the possibly insufficiently averaged
incoherent part that exhibits large fluctuations in energy (shell effects).
Chance to lock at energies for which the incoherent part is very small is then
high. In fact the icoherent part should be averaged out to such an extent
that no shell effects remain. This is what has been done in the
aforementiconed model study 24) in applying the Strutinsky smoothing

procedure 23).

From the discussion it follows that the use of a calculational procedure
for Im M which ensures the correct sign, is important. One of the purposes of
the preceding sections was to show that such procedure is indeed possible.

If, in particular, all collectivity is put into the vertex function W like in
expression (2.24) the correct sign of Im M is guaranteed. Analogous
considerations hold, of course, for the ph and pp mass operators studied in

this paper.

5. Conclusion

In the paper we mainly addressed the very old question of how to put
collectivity into the imaginary part of optical potentials. In our opinion
the "factor 1/2 problem" was never really solved satisfactorily. We here give
a novel prescription where no factor 1/2 ambiguity arises and which assures
that correlation and polarization parts have a definite sign, i.e. only flux
absorption and no flux creation is possible for elastic scattering. Qur
formulation resides in the fact that we could show that all collectivity can
be put into the vertices, and thus a Fermi's golden rule form for the

imaginary part of the optical potential can be applied under all cicumstances.
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Our basic result is eq. (2.24) which also holds at finite temperature.
It represents the first few terms when the vertex function is expanded in

a Watson-Fadeev series. Direct numerical applications should be possible.
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Appendix A
We discuss here the computation of the expectation values such as at the
r.h.s. of (2.3) and (2.6), or at the r.h.s. of (2.9).
From (2.3}, we have

=t
2 m M5 = <o)L (e, (010> - coig, (e3gt, (e) 105, (a.1)
For the first term at the r.h.s. of (A.1), we get

<01}, (£)3,(8)10>

01" (==, 6137160 (67, )0l o, 03T D UCE @) 10>

<01 (Ul (e, )33, (€90 (87, -0) ) Tu (o, )3T (E)0CE ) 105

<0|[T{Jf,(t')exp(~1l dt'{il(r'))})T

x T[Ji(t)exp(—i] dTGI(T))]|0>. (4.2)

When we expand the exponentials at the r.h.s. of (A.2) and apply a Wick
decomposition, we obtain contractions of the interaction-picture operators of

which both are associated with j, or with J*, or cone with j} and the other
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with Jf. For both field operators associated with j, the contraction
coincides with the function iG. For both field operators associated with Jf,
the contraction coincides with the complex conjugate function (iG)“.

The expansion of the exponential for jT in (A.2) gives further also comjugate
potential factors (-iv)*. When one field-operator is associated with ‘1'r and
the other with j, then the contraction coincides either with iG> or iG<,

ef'. (2;17). Disconnected diagrams merely give an overall factor

1. = <0|UI(-M,m)UI(w,-m)IO>. Resummations can be carried in a standard manner,
50 as to eliminate the expectation values of interaction-picture operators in
favor of the expectation values of Heisenberg-picture operators,
<0|T{¢I¢TI}|0> - <0|T[mH¢TH]IO>, <0|¢I¢*II0> - <0|¢H¢*H10>. Grouping together
the terms with a minimum number of particle and hole density factors G%, we

get

<0137, (63, (6)10>,

R N LA I N + (A.3)

T2 71234 202 Y33 Yuy g3y e '
where dots indicate terms containing additional particle-hole factors G>G<,
and the function W is given by (2.18).

The other expectation value in (A.1) can be treated similarily,

<013,(£) 17, (£") 10>

<olu1(-m,m)|o><0|u1(w,t)1§(t)U(t,m)Jo>

1.

1?(b')ul(t-,m)|o><otul(m,-m)1o>

x <010 (=, 51

<0|T{J§(t)exp(-il dTGI(T))}

x [TlJﬁ.(t')exp(-il avv e n) o, (A.4)

-0
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After carrying such steps as those leading from (A.?) to (A.3), an analogous
result to (A.3) is obtained, with the densities of particles and holes

interchanged,
‘0'31(")31'("")'0)1“ - 3 Wia3y Gaip 633' Gy “:'2'3'4' * e o (A3)
Proceeding in an analogous manner as in the resummations leading to the
interacting single-particle functions in the éxpansion of (4.2) or (A.4), one

can carry a resummation that leads to the particle-hole function (2,32)

or (2.33) for a chosen particle-hole pair, ef., (2.30).

Appendix B
We want to show explicitly in the case of the Lipkin model that
formula (4.2) can lead to the wrong sign of Im M. The model [see e.g. 25)]
consists of two equally degenerate levels (energy te/2) with the lower level

filled in the noninteracting case. The interaction is of the monopole-

monopole form and thus the hamiltonian reads
_ vV, .2 2
H = EJO - é(J-'- + J_) ' (B-1)

with

2 4 + @ t '
Yo * m§1(01mclm " Conlom)r Iy = m§1°1m°0m =000 (8.2)

We consider the single-particle Green's function -i(T{COm(t)cgm(t')]> with the
corresponding mass operator

t-t!

A A ([ W E A W Y (B.3)

Off-diagonal elements of M do not appear in the RPA approximation to the mass

operator,
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2 t
M- -iV <T{c1mc1m}>0<T{J_J+}> . (B.Y4)

The index 0 at the expectation value indicates that the Green's function is
calculated in zeroth order with respect to V. The noninteracting and
interacting Green's functions are diagonal in m and further independent of m
since the matrix element in H does not depend on m.

The second-order contribution to M is given by

(2) .2 t + +
M= Liy £,<T{°0m°0m'}>0[<T{c1m°1ml>0<T[c1m'c1m'})0

t t |
- <T{c1mc1m,]>0<T{c1m.c1m]>o] . (B.5)

We now use the diagonality and independence of m to obtain

w2 . -1V2(Q - 1)<T{cgco}>0(<T{e1c1;l>0)2 . (B.6)

The usual approximation (4.2) to M corresponds then to
w  iul T t t 2
M= -iy [<T{c1c1]>0<T{J_J+l> - <T{c000]>0(<T{c1c1]>0) ], (B.7)
where <T{J_J_}> should be calculated in the RPA approximation. To lowest
order (B.7) is identical with (B.6) as it should.

With "1" being the particle index, only the polarization part of the mass
operator survives. The Fourier transformation of the second and first term in
the bracket at the r.h.s. of (B.7) gives, respectively,

—_ §j;____ , (B.8)
w-§£+in

and,

11<01d_1v>12

- — . (B.9)
w - (Ev + 2) + in
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The RPA amplitudes <0|J_Iv> and energies Eu are easily calculated in this

model :
|<0|J_|v>|2 = 2[1 + é—] , E = e/1 - x2 , X = g(n - 1) . (B.10)
v
Assuming a finite value of n as is usually done to obtain a smooth optical

potential, we get for the imaginary part:

In M(w) = -VE(1<019_Iv>| - 3 5
[w - (E, + é)] + 1 (w - ze] +1

} . (B.11)

The open parameters in (B.11) are ¥, @, and n. One can see that for certain
values of these parameters and w the expression (B.11) can be positive which
corresponds to nucleon production rather than absorption. This occurs e.g.
when {1 is small, i.e. the RPA state is not very collective. This is precisely
what can happen in a more realistic calculation where collective and less
collective RPA states enter the complete spectrum. In fig. 4 we show the
absorption rate for w > 0, -2Im M, in units of €, calculated using eq. (B.11)

for Q = 4, x = 0.88, and n/e = 0.14.
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Figure captions
Approximation of the vertex function W by a scattering matrix Tpp'
Approximation to the vertex function.including ph correlations.
Contribution to the imaginary part of the optical potential from the
particle-hole coupling.

Absorption rate -2ImM in the Lipkin model from eq. (B.11).
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