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ABSTRACT

| We pregnt dynamical equations of motion to compute thermodynamic prop-
e;‘tjes of cistrained dynamical systems. In particular, we examine systems that
cia;a be des};ribed by generators of Lie algebras In this method, additional {non-
compact) degrees of freedom are added to the compact phase space to mock the
eﬂbcts of a heat bath. The equations of motion in this extended space are ergodic,
a-;ld canonical ensemble averages reduce to time averages over the classical tra-
jéctory. We compute explicitly the thermodynamic properties of several simple

systems, in: particular, Hamiltonians with SU(2) and SU(3) symmetry.

T After Sept. 1, 1991, Center for Theoretical Physics, Yale University, New
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‘ 1. INTRODUCTION

| We ha#re recently proposed methods to compute canonical ensemble averages
a classical system by extending the phase space to include two additional
griables (pseudofriction coefficients) {1,2, 3] . These are here after refered to as
.| Our methods are based on initial efforts by Nosé and Hoover [4] , which were
odified tP produce ergodic dynamics. In [5] we extended this approach to the
se of a Brownian particle, where we develop a deterministic and time-reversal
ariant description of its motion. The principle is to reduce the computation of
ermal pi[operties of arbitrary (possibly regular) many body systems to that of
imple time averages. Historically, one of the main contributions of J.W. Gibbs
was to demonstrate how time averages could be replaced by canonical ensemble
dr erages. In order to evaluate the emerging multidimensional integrals vari-
oys approaches have been developped: Monte Carlo technique, in particular the
Vletropolis algorithm [6] , stochastic quantization approach [7] , hybrid Monte
Carlo method [8] , molecular dynamics techniques, often each one of these with
, large number of variants. In all these approaches the multidimensional inte-
grals are rraplaced with time averages over some trajectories (ergodicity always
'plied), ije. doing exactly the opposite of what the founding fathers of statisti-
"

mechanics taught us to do. The Monte-Carlo (Metropolis) evaluation of the
anonical ¢nsemble integral generates a sequence of points which can be viewed
as| a trajectory in phase space, albeit a completely unphysical trajectory. In the
ochastic quantization scheme one generates trajectories by solving a generalized
gngevin dquation in the phase space. The main deficiency of the method is that
e effective rate of exploring the phase space is rather slow, since one models
Hiffusion process, the radius of the phase space volume scanned scales with
ime like 0( v%. In the hybrid Monte Carlo method, by combining deterministic
gmilton évolution with a “Metropolis hit” and a “momentum refresh” at the
end of a trajectory one achieves a significantly faster rate of sampling the phase
sphce. The methods in I and those discussed here, on the other hand, also rely
on|a trajejory in phase space. However, this trajectory is driven by the physical
fﬂ;ces of the system together with thermal fluctuations. This allows additional
dynamical information, not available in Monte-Carlo simulations, to be extracted
if needed. These methods are completetly deterministic, without any dissipation
anfl even time-reversal invariant. In I we proposed the following procedure. The
canhonical ensemble of an arbitrary unconstrained 2N dimensional classical sys-
tem H cou‘gpled to a heat bath at temperature T can be simulated by replacing
the infinite degress of freedom of the heat bath by two additional variables, This
results in an extended 2N+2 dimensional space in which the equations of motion
re non-Hamiltonian. By achieving ergodicity, the resulting algorithm is indepen-
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nt of in#tial conditions and time averages of arbitrary operators are precisely
uivalent| to canonical ensemble averages. The coupling of the envisaged system
to the thermostat is not unique, and different forms of the couplings result in
erent time correlations of the phase space variables. Additionally, the relative
e scales of the interaction with the thermal bath and the natural time scales
of the system are naturally included in the formalism. Details and examples can
be found in I. In [9] we applied this method to the XY-model and compared it
gainst the hybrid Monte-Carlo method as well. The critical exponents, which
aracterire the so called critical slowing-down, are smaller in our method than
the hybrid Monte-Carlo approach. This indicates that the isothermal dymam-
c$ has the potential to be a even faster method of evaluating canonical ensemble
Werages than the method of choice nowdays in lattice gauge calculations.

P e m oay
=]

In previous formulations, conserved quantities of the original Hamiltonian
only conserved on average in the extended phase space. However, there are a
vide class of problems that fall into the category of constained dynamics, where
constraints must be preserved exactly at all times. A simple example is that
of|a spin 1/2 particle coupled to a heat bath. While the orientation of the spin
Vy Il vary in time, the length of the particle spin must be conserved exactly at all
es in b%;h the original and extended system, It is straight forward to see that
methods of Nosé-Hoover and those of I do not apply to S U(2). Consider the
cage of a classical rotator described by the Hamiltonian H = J2/2. Since total
mgular momentum J? is conserved, the phase space is the 2-sphere 5%, can be
parameterized by the canonical coordinates

g=J; = Jcos#, p=—9, {e:p} =1 (1.1)

’]i‘ is set of coordinates is not defined globally, and in general different atlases
r¢ required for a global description of the dynamics. If one naively applies the
;‘}. sé-Hoovkr approach, one obtains the following equations of motion:

¢=0,
p=q-p, (1.2)
{ = —aT.

Here ¢ is the heat bath degree of freedom which is coupled to the momentum
anfl T is the temperature. These equations show that the energy of the orig-
ingl system H = ¢%/2 is conserved identically in the extended system, which
clearly cannot lead to a canonical ensemble. There is another complication due
to |the compact character of the phase space, where in principle one must use
several different atlases in order to avoid singularities of a particular coordinate
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set (in the above example the poles). Even though the Hamilton equations of
mption are easily translated from one atlas to another, the terms describing the
dj;upling tF the thermal bath do not seem to have obvious transformation prop-
é ties and consequently the extended equations of motion are undefined under
sich a trapsformation. Hence, our concern in this article is the extension of our
ptevious 2 gorithm to such constrained dynamical systems {1, 3] . The class of
dnstrained dynamical systems is very big: classical spin models, path integral
mulation of spin problems [12] , gauge field theories [13] , algebraic models
of nuclear collective or molecular motion, ete. Qur examples will focus on a par-
ti¢ular realization of the problem, useful in itself, and containing the essential
ingredients of a general constrained situation. We focus on Hamiltonians that
can be written in terms of generators of a Lie algebra. The constraints in this
case correspond to the Casimir invariants of the algebra. At the moment we
also restrict the discussion to classical limits of Lie algebras as detailed in Ref.
(. Classijca.l limits play important roles for many reasons. For example, wave

ctions are concentrated along classical trajectories. Often a very accurate
c}scriptiortx of quantum phenomena can be inferred from classical trajectories
tPether v&ith relatively small quantum fluctuations. Once there is an under-
standing of the classical limit, the quantum situation can be recovered through
path integral methods as well. Of course, one can envision situations where one
ddes not wish to conserve the Casimir invariants, or, in other words, maintain
a fixed representation of the algebra. This class of problem falls more naturally
1h o the framework of unconstrained dynamics as discussed in I.

| As mentioned above, a manifestation of exactly conserved quantities in the
classical limit of Lie algabras is a compact phase space [10] . The Casimir in-
iants impose constraints on the generators of the Lie algebra (which are non-
cahonical ¢oordinates in the classical limit), inducing a topology on the phase
space. On these curved phase spaces, previous methods of producing ergodic
tre jectories in an extended phase space are no longer valid, as illustrated in Eq.
(12). A modified Liouville equation must be defined in which the curved geom-
etty of the phase space is explicitly taken into account. That is, some care must
be| taken to ensure that chaotic trajectories are limited to the classical phase
sphce manifold, and these do not wander into regions where the Casimirs are
no} conserved. The development of these methods parallels our treatment of
sical systems in I. A very nice feature of these constrained methods is that
¢ symmekries of the problem are built into the equations of motion and hence
they are preserved throughout the time evolution of the system. This approach
1q bimilar to the standard treatment of classical constrained systems, in which

ong constrf}cts the Dirac brackets [11] , that preserves the constraints, once these
ard known.|




This paper is outlined as follows. In Section 2, we review the geometry of the -
¢lpssical piha.se space of Lie algebras in the context of Ref. [10] . In discussing
tHe classical Poisson structure, the constraints due to the Casimir invariants will
be seen to arise naturally in the formulation. In Section 3, we review basic
définitions in chaos used throughout this article. In Section 4, the method of
adding the heat bath degrees of freedom to the phase space is discussed. A
Liouville equation is presented and the equations of motion are derived. Section
5 explicitly details the method for systems with SU (2) symmetry. In section 6,
a jmore complex system, SU(3), is discussed. Finally we conclude in Section 7.

2. GEOMETRY OF THE PHASE SPACE

The construction of the classical limit for Lie algebras is opposite to the
ugual routg taken to define the quantum theory. This is shown schematically in
T ble 1. If we start in an unconstrained phase space, the quantum limit can
ﬁ defined by replacing Poisson brackets with commutation relations, replacing
classical variables with quantum operators and adding an 7 appropriately (we set
h = 1). This prescription can be followed for the canonical commutation relations
asj well as the equations of motion, now in the Heisenberg picture. The classical
theory is in some sense more general, as we can compute the Poisson bracket
of a.rbitrarly functions, whereas the commutation relations of arbitrary functions
are not generally easy to evaluate. Also the classical theory has a wider class of
symmetries realized in terms of (nonlinear) canonical transformations. When we
come to Lie algebras, we have an apriori quantum theory. What we would like to
do is produce a corresponding classical theory, developing all the structure from
the Poisson brackets. In this section we review aspects of the classical limit of Lie
algebras [10] . The classical limit corresponds to a classical theory completely
ogous to the usual quantum theory. We begin with a set of N generators
commutation relations defining a Lie algebra

[X;,X,-] = icijp X, Gyjrk =1,..., N), (2.1)

where ¢;;; is totally antisymmetric. In the classical limit the generators pass to
classical coordinates (c-numbers) which define an N dimensional Euclidian space.
For arbitrary functions F(X) and G (X) over this space, the Poisson structure of

the classical limit of Lie algebras is then defined through the Lie-Poisson brackets

[24]

_9roeg . . OF 8G
| {F(X),6(X)} = EHX_,-BX,'C""X" = G;,(X)ax'_ 5%, (2.2)
Here G;j(X ) is the antisymmetric Poisson tensor, which explicitly dependends
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TABLE 1. Transition between classical and quantum mechanics

Classical

Quantum

- {ei,pi} = 6
Equations of Motion :
F={gH =3
%}ﬁ ={p,H}=-32
% = {FH)

- General Functions :
(F,G) = 2E.9C _ 9F 9G
H)

= 99 9px ~ Bpx Ja

Lie Algebra :
?

[6i, B;] = 1635

- ]
i = |F, 8]

'q)
-
>
—_—

[, %] = ick %,

on the (ng

[éa,Xj] =0,

n-canonical) coordinates X. The parallel between the quantum and
classical limits is apparent if we take F(X) = X; and § (X) = Xj, in which case

{Xi, Xj} = ciji Xy = Gij(X) = -Gj(X). (2.3)

A general feature of rank n Lie algebras is the existence of n Casimir operators
a,..., C™), as indicated in Table 2. These operators are polynomial functions
of the generators which commute with all the generators:

(@=1,..,n; j=1,..,N). (2.4)

e Eq. (2.4) is a property of the commutation relations (2.1), and in view

Sinc
of]‘:he clas%ical parallel (2.3) , it is clear that in general we have the analogous
re

tion at|the classical level:

{Ca,XJ'} = {,

ot =1, N, (2.5)

where C* are polynomial functions in the Euclidian coordinates Xi. Since these
functions C* have zero Lie-Poisson bracket with each X #» it follows that they also

have zero

with Dirachrackets.

ie-Poisson bracket with an arbirary Hamiltonian, in direct analogy



EIEBLE 2/ Number of canonical coordinates and invariants for the classical Lie

ebras. ;

Lie | Number of Polynomial Order Number of
Algebra Casimirs of Casimirs Pairs (g, p)
SU(n) n-1 C2,Cs,...,Cn 2ecl)
S0(2n) n C3,Cay...,Con_2,Ch n(n — 1)

150(2n + 1) n C3,Ci,...,Con n?
| Sp(?di) n C2,C4y...,Coq n?

G, 2 Cy,Ce 6

Fy | 4 Cs,C%,Cs, Ch2 24

Eg 6 (s, Cs, Cs, Cs, Cy, Cig 36

Eq 7 C3, Cs, Cs, C10, C12, C14, Chs 63

Es 8 C3, Cs, C12, C4, C1s, Co, Ca4, Cyo 120

Th
po

Due to the existence of the n Casimir constraints, or constants of the motion,

y trajectory is confined to a compact (N —n) dimensional manifold M embed-
ed in RY land parametrized by N non-canonical coordinates X; (i = 1,..., N ). It
is pot possible to globally define a set of coordinates and momenta on these man-
iolds, although all the usual classical invariants, such as the symplectic 2-form
Adg, can be constructed in terms of the coordinates X; [10] . Nevertheless, the
epmetry ¢an be defined through the gradients of the Casimir functions C*(X),
ihich are normal to the phase space manifold M. Aside from special cases,
which we J

the n dimensional space normal to the phase space. It is convenient to define n
1'honormrl vectors €%, related to the gradients through a linear transformation

o not consider here, these gradients are linearly independent and span

| vcl él
o l=m] . (2.6)

ver én
e unit vectors e are labeled with greek superscripts (a, 3, ...), and their com-
ents in RY are labeled with roman subseripts (3, §,...). These vectors form a

orthonormal basis for the n dimensional space normal to the N — n dimensional
Rh e space manifold M. (These vectors are convenient at the formal level. How-

ey

St

r, the equations of motion we obtain are independent of them.) The case of
[(2) provides a simple illustration and is good to keep in mind. Since there




are three 'Eenerators (Jz,Jy, J:), N = 3. The conserved quantity is the angular
momentum J 2 or the radius of the sphere. In this case the N — 1 = 2 dimen-
sipnal space is the surface of the 2-sphere $2, and the n = 1 dimensional space

isjthe radial direction, normal to the surface of the sphere, and in the direction
of VJ? x J .

In the|forthcoming discussion, we will need to define a generalized Liouville
continuity equation on this compact phase space manifold, for which we will

require derivatives on the phase space. The unit vectors defined in Eq. (2.6)
allow a convenient definition of this phase space derivative:

D =\ o
px=Vi— ; ef(8% - V). (2.7)

When applied to the Casimir functions, this derivative is vanishing by construc-
tion, since it projects the usual Euclidian gradient V onto the phase space by
subtracting the components normal to the phase space manifold. It should be
clear that |the inner product of this derivative with any vector normal to the
phase space is by definition a null operator;

o
€L DXk 0,

N

(a=1,..,n). (2.8)
k=1

will al#o need to construct general vector fields that are orthogonal to the
gradients of the Casimir functions. There are many ways to generate these types
of vector fields. For example, one can take a general N dimensional vector field
A}(X) and project in onto the N — n dimensional phase space manifold M:

AL'(X) = Ap(X) — Z ex(A . e%). (projected) (2.9a)
‘ a=]

Al ernatel)‘L, the structure constant can be used to project onto M as well. This
method is 1simi1a.r to a generalized cross-product since it adds a twist to the
jection above:

- Al(X) = e Aj(X) Xy = Giy A (). (twisted)  (2.9b)
(The sum bver repeated indices is implied throughout this article.) The fact

that this projection is not unique is unessential for the method we are going
to |describe. Other projection schemes can also be implemented, although the
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twisted method seems to be the simplest one. In either case, the resulting vector
field is in ;Ehe tangent to the phase space manifold:

vee. Al =, or e¥. Al = . (2.10)

We shall establish now a series of formal identities, needed in Section 4. The
reader can skip this part at the first reading and return to it when refered later on.
Since the Hamiltonian flow from the Lie-Poisson brackets is restricted to the phase
space manifold, the derivative (2.7) acting on the Lie-Poisson bracket is equivalent
to the ordinary Euclidian gradient, and is identically zero by antisymmetry of
the structure constants. To establish this
D . d 8H - ) OH

£ X, H(X)} = Xm )~ el —- Xm—). (2.11
PX; { *’ (X)} X, (CklmaXI m) ; exe; BX, (ckimXm 8X,) (2.11)
The first term vanishes due to the antisymmetry of the structure constant. To see
hat the second term also vanishes, recall equation (2.5). In terms of components

a o
0= {0, F(X)} = e g Xa Gi(X), (2.12)
where
oF
Gi(X) = ax; (2.13)

d F(X} is an arbitrary function of X. Equation (2.12) indicates that the
stfucture constants contracted with any unit vector &* (recall that the gradients

* are expressible in terms of these unit vectors through the definition (2.6))
d coordi;(xa.te X identically vanishes. Eq. (2.11) then reduces to

D
HX—k{Xk,H(X)} =0. (2.14)
We also hqve trivially:
‘ ‘ DX,'
D—.X.: =N —n, (2.15)

In general, for computations which rely on the projections of Eq. (2.9a) , there
will be the need to evaluate sums of the form

Def  Oef Oef
\ E_ Y% _E: O g
DXy 0Xp 4 k5%, (2.16)

These derivatives will require knowledge of the unit vectors and must be con-
structed case by case.



We conclude with some final remarks on the classical limit of Lie algebras.
The generbl field of geometric quantization deals with methods to determine the
proper functions on classical phase space that can be realized in terms of quan-
tum operators. That is, general classical functions of ¢; and p; do not always have
rresponding quantum counterparts. The classic example is that of defining the
proper quintum canonical coordinates on compact phase spaces, such as the torus
{(¢,p) (mod 1)}. In the classical limit of Lie algebras, the generators pass to
classical coordinates, and the Gasimir operators become classical functions that
cqmmute through the Lie-Poisson brackets irrespective of the Hamiltonian, At

e same time this is equivalent to the fact that the Casimir function are all
in| involutron [15] , i.e. they also commute among themselves as well. These
imir functions are constants of motion that induce a topology on the phase
space. The classical limit of the generators are non-canonical coordinates. As the
phase space is compact, we cannot define canonical coordinates globally, and we

limited to local expressions of p and g in terms of the non-canonical genera-
tors. Due to the constraints, there are more generators X than coordinates and
mpmenta (p, ¢). The advantage of begining with the quantum limit is now appar-
ent. We know apriori exactly which functions of the classical (local) coordinates
(piq) corr ‘spond to quantum operators: it is precisely those combinations that
produce the generators of the Lie algebra. In this way the formalism of geometric
quantization can be completely circumvented.

3. ErGobpIiciTy

|
Consijer a system evolving in time according to some Hamiltonian H, and
arbitrary observable A(g,p). The dynamical equations of motion are given by
th Poisso#; brackets, and have the form ¢ = F (#), where ¢ = (g1,...,px). It is
natural to |define the time average of A(g, p) over the classical trajectory

Alg,p) = Jim 7 [ @t Ala(e), ) (3.1)
0

Such a trajectory is illustrated in Fig. 1 (left side). (It is allowed to cross
over itself since it is projected onto the (g, P) space from a larger space.) The
pojnts indicate the time integrated solution to the equations of motion, and are
separated by the integration time step. We can also define the phase space
average of A(q, p), given by

(Alg,p)) = % / dp A(g, p). (3.2)

Here du is j}the phase space measure, and Z is the normalization constant. Since
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we are interested in the canonical ensemble average of A(g,p), our measure will
clude a Boltzmann factor exp (—H/T). A system is then defined to be ergodic,
the sense of the canonical ensemble, if

Je pu

(A, p)) = A(g, p), (3.3)

except on a set of measure zero (usually denoted a.e. for almost everywhere.)
This is illustrated in Fig. 1 (a-b). In this figure, the time average of A (Eq.
(3.1)) along the classical trajectory is given by the summation of A(q(ti), p(t)) =
A(gi, pi) evaluated at the points separated by dt, the integration time step, on the
trpjectory. If the phase space is partitioned into cells (right side of Fig. 1), these
points can be binned into a histrogram, which generates a density distribution
on] the phase space. The time average of A is then equivalent to the phase space
average of A weighted by this density distribution. An ergodic trajectory will
reproduce the Boltzmann factor density in the phase space. (In the cases we
consider below, we will use non-canonical coordinates together with constraints,
which modifies the measure. The discussion in this section generalizes trivally to
this case.) If the system is ergodic, these averages are independent of the initial
conditions, This is an important requirement for convergence of the algorithm
for a general Hamiltonian.

Another often encountered definition is mizing. A system is mizing if corre-
lations vanish on long (possibly infinite) time scales. A system that is mizing is
ergodic, but the converse is not always true.

4. COUPLING TO THE HEAT BATH

1. EQIJ;JATIONS OF MOTION

1Y

The H#miltonian equations of motion on the compact phase space can be ex-
pressed in terms of the non-canonical coordinates through the Lie-Poisson brack-
ets of Eq. {2.2):

\

where the dot represents the time derivative, and the antisymmetric Poisson
tensor has the form (for Lie algebras)

Gii(X) = cijk Xk (4.2)

In the treatment of unconstrained classical systems in I, heat bath couplings
wete explicitly added to each of Hamiltons equation of motion. For constrained
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q q

URE 1. Relation between time average and phase space average for simula-

5 of ergodic equations of motion.

12




i
tems, tﬂe coupling of these degrees of freedom to a heat bath can be achieved

ough the introduction of an arbitrary vector field Alkl (X) tangent to the phase
ce, and|a heat bath coupling ¢(¢) (or pseudofriction):

W

o =

X = {Xi, H} - g(¢)Al. (43)

choosid‘g projected or twisted forms of All, one has the following equations of
tion: ‘

| ¢ = __(9_H__ - 3 er(A- & rojecte a
ﬁs Gij %, g(¢) (Ak :{1 24 )) ;  (projected) (4.3a)
‘ )#i = Gy {g—£~ - g(C)A,'} . (twisted) (4.3b)

e the pseudofriction function g(¢) is an arbitrary function, coupled to the
Jection of an arbitrary vector field Ax(X) in order to to ensure that all the
constraints are preserved throughout the time evolution. We will limit the dis-
sion in *his section to only one pseudofriction function, although in principle
re is no|restriction on their number, and the formalism is trivially extended.

In general, we do not simply want to redefine the Hamiltonian. Rather, we
::j t to violate phase space volume conservation. This is in complete analogy
ith the unconstrained case, see I, where we had to break the symplectic structure

| g—;{{: = ¢(¢)Gji0iA; # 0. (44)

Having| defined an N + 1 dimensional extended space (X,¢), an extended
ce probability distribution f(X,() can be introduced. A natural choice of f

X ) =Nexp (_% {H(X) + -i-a(c)}). (4.5)

e a is 3 free parameter, which controls the rate at which the energy is ex-
ged between the envisaged system and the thermostat, H (X) is the Hamil-
ian of the envisaged system, T is the temperature and A a normalization
stant. The function G(() is an arbitrary function, the only restriction being

13



classical ph
the Poisson
(4.8b) are
¢ and mom
the conven
conservativ
Liouville cg

derivat

L uville eg
self-con

ations of motion (4.3a) -

t f is normalizable. The extended space density f defines the measure on M,
equivalently, the (generalized) canonical ensemble:

) = (4.6)

1 1 N n
= [du(-y== [ fdc TTdx; TT s(C* — ¢\ (...
z [ r=7 [ racTax [T s - e

re the values of the constraints (constants of motion) C'®, which are

the initial conditions, and Z = [ du is the partition function. If a

rgodic, then the time average of any operator in the extended space

ndependent of initial conditions and the canonical ensemble average
from the time average:
. 1
4.7
[ @7)
0

Hm -
t—o0

# AKX, () = 7 [ dn AX0)

(4.3b) , we have explicitly extended the
ase space by one degree of freedom, (. In adding the coupling to ¢,
structure of the equations of motion has been broken : Eqs. (4.3a) -

no longer in the form of Eq. (4.1). If we could define the coordinates
enta p in terms of the generators X, this is equivalent to saying that
tional Liouville equation in ¢ and p is violated. In order to discuss
ive time evolution of probability distribution f(X,(), we must define a
ntinuity equation in terms of the non-canonical variables X and the

egrees of freedom (. This equation must restrict the flow to the phase

ifold. A suitable choice is the following:

N .
_ _f D(fX; ) a(fQ)
=2 ; X, o (4.8)
tive D, defined in Eq. (2.7), ensures that the flow of Eqs. (4.3a) -

the phase space manifold M, whereas the ¢ direction is unrestricted

e. Let us summarize the steps up to this point. We have introduced

equations of motion (4.3a) - (4.3b) , a postulated phase space density
generalized Liouville equation on this extended space (4.8). In order

ese consistent, (4.3a) or (4.3b) and (4.5) can be inserted into the
uation and an equation of motion derived for ¢. In general this results

sisent differential equation that must be solved. One solution is easily

14
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So

tained id we start with the ansatz
d(:
1 —— 0' 4.
lving th% Liouville equation we obtain the equation of motion for (:
Il
_ g I DAy :
= Al -T-—£ d 4.
« [dG/dC] ( VH DX, |’ (projected)  (4.10a)

OH _ 194, ) . (twisted)  (4.10b)

— s 9 4
= acijh Xk [dG/d(] (A’ ox: L%,

|
The results in Eq.  (4.10b) are obtained when one realizes that efciin Xy = 0,
which comes from Eq. (2.12). We have detailed the derivation in the appendix.
The condi}on (4.9) together with the equation of motion (4.10a) or (4.10b)
result in ¢
ir;iclependemt of (. By absorbing any constants into the definition of «, we set

e consistency condition that the term in the square brackets must be

9((y = —. (4.11)

dG
d¢

'ﬂhus, the choice of ¢({) in the equations of motion determines the thermal distri-

bution of (|in the canonical ensemble. The resulting equations of motion, which
by |construction preserve the extended space density f during time evolution, are
hence forth given by:
Projected :
%= a2 x, —g(0) [ 4= 3 (4 e
I *= (4.12)
. DA
= Il Tk
(=a (A VH TDXL.) ,
Twisted : ‘
; OH
Xi = ciji Xy (—* - Q(C)Aj) ,
0X; (4.13)
¢ = acijpXy (4,20 _ 04 |
- TRk \ Yok, 0xX; )’
Iy this form the pseudofriction ¢ couples to all degrees of freedom. This not

neccesary and other types of coupling can be introduced as well if needed. In
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practice, the method using the twisted projection provides a much simpler pre-
scription for eoupling the system to the heat bath since it does not require any
knowledge |of the unit vectors é*. In the applications below, we will consider
both methods. In general, additional pseudofriction couplings can be added to
the equations of motion (4.12)-(4.13) in the form ¢ ({)BII and to the distribu-
tion function f in eq. (4.5) in the form G'(¢)/B. The resulting equation for ¢
is precisely analogous to that one for ¢, with «a, A; and ¢ replaced by 8, By

and &, respectively. In practice it seems that one pseudofriction is not enough to
generate ergodic trajectories, and two is a minimum number.

Finally, we observe that there is a quantity conserved by the equations of
motion, denoted the pseudo-energy:

| 1
£ = H(X)+—G()+T / dt () 24k, (4.14)
By direct substitution of the equations of motion into £ it is easily checked that

£ = 0. The term inside the integral corresponds to the divergence of the equations
of motion (4.4).

mal distribution and Liouville equation, there is no guarantee that the functions
) and Ax(X) lead to ergodic trajectories. Since we will primarily study the
tw sted equations of motion (4.13), it should be demonstrated that at least there
are no stable fixed points in those equations of motion. This can be acheived
by linearizing the equatlons of motion around an a,rbltrary pomt in the extended

4,2. STA ILITY
Although the equations of motion (4.12)-(4.13) are consistent with the ther-

take a case where there are two pseudofriction functions, although the argu-
ment holds|for any number of them. By defining the vector

¢ = (X1,.-.Xn,¢, ), (4.15)

the equatiorls of motion (4.13) can be written as

¢ = F(¢). (4.16)

Linearizing around an arbitrary point in the extended space ¢q, defines the sta-
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Ul§81

bility matr%x:
|

. (OF;
E) ¢J 4o 2 ( )
The sum of the eigenvalues of the stability matrix is given by its trace:
8F; 04, 0B;
oint (FP) condition is ¢ = 0, which leads to the conditions

oH
c"’"‘X"a_X,- = 9(Qeijr Xk Aj + h(€)cijr Xy Bj,
OH J4A;
c,'ijkAj-é-E = Tc,'ijka—XJ’ (4.19)
oH 0B;

c,'J'kaBjaX =Teip Xpmo 3X;’

The r.h.s of the last two conditions can be inserted into the trace formula (4.18):

T (55, = genk [s0a g + OB E] . @)

ng the r.h.s. of the first condition in (4.19), we have

dF; 1 OH 8H
( 5 ¢,) Z A= meiipXr e 5% 5X; = = 0. (4.21)

A stable fix point would correspond to negative values for all eigenvalues );’s.

Hence ther

e are no stable fixed points at finite temperature for any nontrivial

choice of functions A, B, ¢ and h. (An analogous treatment for the projected
method is not simple, and it must be considered case by case.) This, together

wit

h comparison of the results of the method for several initial conditions is in

practice sufficient to determine ergodicity.
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9. HAMILTONIANS WITH SU(2) SYMMETRY

The simplest algebraic systems to study are Hamiltonians that can be ex-

pfessed in terms of generators of SU (2). For this case the (compact) phase space

he two-sphere S2.

1. EQltnTIONs OF MOTION

The quantum description for SU(2) consists of the commutation relations

(Ji, Ji] = deijn i, (4,7,k=1,2,3) (5.1)

y that J* = fg + f: +J 2 commutes with any function of Ji. In the classical
it for SU(2), the J; are classical coordinates and the symplectic structure

the classical phase space is defined by the Lie-Poisson brackets for arbitrary
Ictions of J;:

where € ?the Levi-Civita tensor. These commutation relations have the prop-

| {F(1),6(0)} = "g%g_iffijk-]k. (5.2)

e equations of motion for the coordinates can now be obtained using the
milton’s equations of motion:

. oH
Ji - {J;,H} = Eijngk 7 (5.3)
J

In this L:ection we consider the effects of two pseudofriction couplings using

pseudofriction coefficients ( and £. The most general equations of motion that we
consider for an SU(2) Hamiltonian H coupled to a heat bath using the twisted
projection method are of the form:

h

Ji = {3 H} = 01(Q)A] ~ g2(6)B]
= €1k (g% - gl(C)Aj - gz(g)Bj) ,

, OH _9A; (5.4)
C = Olé,'jkv]k (Ajgj; — _aTI,i) ’

. oH 0B;

£ = ﬂeijk']k (Bj‘éT' - '-67:) .

e pseudcrfriction terms ¢1 and g, and the Hamiltonian define the canonical

18




ensemble through the phase space density

73,60 = e (-5 (B + Lan0)+ 36:0) ) (5.5)

where g; = dG1/d( and g; = dG;/d¢. For arbitrary vector fields A and B it is
easily verified that the Casimir function J? is preserved:

WG!

JiJi = 0. (5.6)

have studied the functions g(¢) and h(¢) of the forms:

| Cn, n= 1a3; En, n= 1$3;
n(0) = { o g2(6) = { e (5.7)

For A and|B we have chosen vectors that have nonzero curl. (In choosing the
various functions, one must be careful not to allow stable fixed points in the
equations of motion.) Some choices for the twisted case that lead to ergodic
trajectories are:

for

Ap = (53,)51,82), Bi=(852,—-51,0), Ci=(515253,V35253,v55152) (5.8)

When we use two pseudofrictions (N = 2), we refer to A and B, and all three

the N ‘ 3 situation.

| . . . .
In studprmg the projected method, the equations of motion are somewhat

longer:

Ji = {3, HY - 9:(O)4] - 92(6) B!
= 2100 [~ 232] 0 [ s,
& D4, (5.9)
= If.
(=a (A VH - TDJk)
Il
Sy | DB,
=4 (B' VH - T___Djk)

In this study we have taken Ay(J) = Via and By(J) = Vib to be gradients of
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lynomialf a(J) and b(J) of the form:

3 3
oJ), 8(T) =D wdi+ Y wiihildj, (5.10)

=1 1,j=1

re u; and v;; are constants. One suitable choice that we have found is

a(J) = %(Ja — J3)?, b(J) = le'(ﬁjl + J3)%. (5.11)

512. FLAT SPACE ANALOG

A direct comparison of these methods for compact spaces to the previous

unconstrained (flat-space) methods of I can be made if we expand the equations
of motion locally in a tangent plane to the phase space. Consider the north pole
(NP) of the sphere. At this point J; = J, = 0 and J = J3, and the only non-zero

Li

Poisson bracket is

for| which we associate ¢ = J1/v/J and p = J, /VJ. The twisted equations of

i

or

He

Th

tion have the form (absorbing constants into the definition of A):
- OH
Jo=J—+ J1(C)Ay + Jg2(€) By,
. OH (5.13)
Jy = _JBJ ~ J91(¢) Az — Jg2(£) B,
equivaleﬁlxtly R
| . OH
| ¢ = = +91({)4p + 92(6) By,
: p
‘ - E (5.14)
=% 91(¢)Aq — g2(£) By
re Apq = VJAzy and Byy = /7 B; 4. This should now be contrasted to the
thod used to couple unconstrained systems to a heat bath in I:
1 . 8H
§= - +h(Q)F(g,p)
P
S (5.15)

p= i 9(€)G(g,p)

us in every tangent plane, a suitable choice of the components of A, Ap and
can be made so that the methods look identical. The Liouville equation on
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the tangent space can also be simplified since the projective derivative (2.7) takes

the form

wh
Th

D _90 Ji, 0
DX; — aJ; J*aJ;

_2 2 0
: ~ aJ1’ 8Jy’
Placing this expression into the Liouville equation (4.8) one obtains:
_Of L Af9) | a(fp) | AfQ)
| 0=2* 5, o T o (5.17)

|
ich again is precisely the Liouville equation used for unconstrained systems.
is demonstrates the close parallel with the methods for unconstrained systems.

3. PH#SE SPACE

In pracitice these techniques are simple to use. Consider the case of the

classical rotor

| H =27t (5.18)
Using the twisted method (5.4) and the functions (5.8) we have the equations of
motion
Ji = —kJaJs — (1 Js + E( N1 Js — T3),
Jo = 6103 = Clads + (112 — J3),
Jy = —C(JZ + T3) + E3(JaJs — TP), (5.19)
(= —ads(x(JF + J?) + 27T),
E=B(T(J1 + J2 + J3) — &J3(Jo s — T2)).
Th

se equai:ions of motion are evolved in time. A typical trajectory consisting

of $000 points, sampled every dt = 0.02 along the trajectory, is shown in Fig. 2.
The initial condition used is

¢ = (J1,42, 33, ¢, €) = (0,0.555, —0.832, 0, 0) (5.20)

together with @ = § = T' = 1. In the numerical simulations, integration of the
equations of motion was performed using the IMSL subroutine DIVPRK, with
an |error tolerance of 1078 — 10~%. This routine is based on the programs of
Hull, Enright and Jackson [17] , and uses Runge-Kutta formulas of order five
and six, as cited in the IMSL User’s manual. All computations were performed
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in double precision on a VAX 3100 workstation, which has a 64-bit wordlength,
in DEC VAX-FORTRAN. The dt referred to throughout the text is the sample
e, which is in general larger than the actual integration step, determined by
the subroutine. At every interval dt, various quantities, such as J;, H and so
forth, are sampled and binned. The resulting histrograms of these quantities
c? respond to the thermal distributions, which contain much more information
simply the moments or other averages. For example, by binning J;, we
obtain the thermal distribution f(J1). For the classical rotor (5.18), the exact
lts can also be obtained by direct integration in the canonical ensemble. Up
to normalization, they are given by

£ = j dTydTse~ R 550 — 1)

2 2 J2
= 2Jre—*J _Jl)szIg (H( 5T ))

F(J2) = 2TmeRI =)D g, (”(Jz; % ))

(5.21)

f(-]s) = e-ng/zT,

where I is the Bessel function of the first kind. The thermal distributions cor-
responding|to the trajectory in Fig. 2, obtained by binning at each sample time,
is compared to the exact results (5.21) in Fig. 3. For a larger number of steps,
the convergence improves considerably, as shown in Fig. 4. As we shall discuss

below, convergence to the exact result generally behaves as 1/v/N, where N is
the number of steps.

5,4. CONVERGENCE AND ERGODICITY

An important question is that of ergodicity. If the equations are ergodic,
then the results obtained when using this method are independent of initial con-
ditions, a property which is essential in order for this method to be of value.
Unfortunately we are not aware of any methods to determine whether or not a

g¢ eral set of (non-Hamiltonian) equations are ergodic or not. Rather we resort
td a more direct way of testing this. By partitioning the extended space into
a'l ttice, we can take each lattice site as an initial condition and evolve each
trajectory to a fixed final time ¢. At this time, the thermal distributions of each
of the extended space variables are compared to the exact distributions, through

th qusmtiT A(t)

A(‘}bi,t) = 100/ | fexact(¢£) - fcalc(¢i,t) l d¢i, (522)
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FIGURE 2. Ergodic trajectory on a sphere, evolved to a final time ¢ = 100 using
an integration time step dt = 0.02, for the classical rotor H = J2/2,
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FI(}URE 3. The thermal distributions corresponding to the trajectory in Fig. 2.

already at this short time, the thermal distributions resemble to exact results.
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FIGURE 4, The same as Fig. 3, except a final time of ¢t = 30000. The deviations

from the exact result are statistical in origin.
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es of A(t) for each initial condition is an indication of ergodicity. If

are similar for each initial condition, we take this as a practical test
y. (Recall, we have already chosen equations of motion with no stable
) In Fig. 5, we show the distributions of A(¢ = 100) obtained for 600

litions, for the classical rotor H = J%/2, using three pseudofrictions
isted method. For all the initial conditions, the deviations fall within a

of each other, indicating that the initial conditions are not important.

ults can be obtained using the projected method.

r quantity which is of interest is the rate of convergence to the canon-

le. This is obtained by studying the time evolution of A(t). In Fig. 6,

time evolution A(t) for a classical rotor H = J2/2 using the projected

he dashed lines corresponds to 1/v/f oc 1/v/N, the statistical limit for
e.

Fig. 7 is identical to 6 except that we use the twited method,
only two pseudofrictions. Obviously there is no significant difference
e methods for these cases, and the convergence has an average 1/v/N

PUNOV EXPONENTS

e of the pseudofriction terms is to create dynamical instabilities in

the system of equations. A convenient tool for understanding the nature of the
instability, is the Lyapunov exponents. These exponents measure the average
exponential separation between two neighboring points in space. If we consider
a;small separation between two points in the extended space, represented by the
vi;c tor ¢, we can study the time evolution of € over short times using the linearized
equations of motion, introduced in section 4.2:
oF
é(t) = —¢(0). 5.23
(1) = 5540) (5.28)
Here ¢ = F(¢) represent the equations of motion in the extended space. The
formal solution is the time ordered integral
[ OF
€(t) =T exp /dt’ — | €(0). (5.24)
9¢
0
The maximum eigenvalue then has the form
Amaz = llnc}o H Zlog | e(idt) | . (5.25)
26




H(T)=1,%/2
v(AJd,) v(Ae€)
0- 1 i T
0.0 P '
v(AJy) v(A,¢€)
0.1} T
0.0 t +—
v(AJ,) v(A,¢)
0.1 i T
0.0 .
0 5 0 5
Deviation A(t=5000) (%)
FIGURE 5. Normalized frequency distribution of the deviations A(¢i,t), for
t = 5000, where ¢ = (J1,J2,J3,(,€,¢). We have used three pseudofrictions on
the classical rotor with the twisted method. The results are based on 600 initial
cénditions.
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Typical exponents are shown in Fig. 8 for a classical rotor for selected values of
o and 8. These exponents have the same behavior observed in I for uncostrained
dynamical systems: they are monotonically increasing functions of the coupling
strengths a and 3.

5.6. MI)%ING

An important property of these methods is the strength with which the pseud-
ofrictions couple to all the degrees of freedom. This allows for rapid diffusion
across the phase space. This can be illustrated with the classical rotor H = J 2/2.
The extended space is projected onto phase space, which is the sphere S2. A cir-
cle is defined on S? with J, = 0.5 consisting of 103 points. Each of these points is
té.ken as the initial condition, and evolved in time using the projected equations
of motion. | The characteristic time of the system is of order unity. The initial
condition of the circle is plotted at ¢ = 0 in Fig. 9. The same circle at later
times ¢ = 10,20 and ¢ = 30 is also shown in the figure. After only 20 cycles, the
circle already covers the entire sphere. It is clear that the points diffuse across
the phase space quite rapidly. This can be an important feature when studying
systems close to a phase transition, where one has critical slowing down.

5.7 . CORRELATIONS

Since the equations of motion are dynamical trajectories, it is possible to
evaluate auto-correlation functions for the systems under study. Auto-correlation
functions are shown in Figs. 10-11 for a classical rotor, using 2 and 3 pseudofric-
tions in the twisted scheme, and 2 pseudofrictions in the projected scheme. All
auto-correlation functions have been normalized to unity at 7 = 0. It is clear
that there is a strong dependence on the scheme one uses and on the choice of
pseudofriction couplings. This is an essential feature, since the coupling of a sys-
tem to a heat bath can depend on many parameters, such as the rate of exchange
of heat, the type of coupling and so forth. This type of method has the potential
to describe|a wide variety of physical situations.

SYSTEMS

The extension of the methods in the previous section to systems of coupled
spins is straight forward. Consider for example the case of 50 spins on a pe-
riodic chain. The interaction is taken as a nearest neighbor anti-ferromagnetic
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FiGURE 8, Behavior of the maximum Lyapunov exponent as a function of the

cdupling strenghts a and S.
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FIGURE 9, Time evolution of a circle, defined by 10° point, at J, = 0.5. Each
point is taken as an initial condition for a trajectory. The equations of motion
are that of the classical rotor using the twisted method. The characteristic time
of the system is t ~ 1. The structure of the circle is shown at times # = 10, 20, 30,
indicating rapid spreading of points across phase space.
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interaction

described by the Heisenberg Hamiltonian:

50
H=x) 3.3, (5.26)
=1
The underlying algebra is the direct product of N =50 § U(2) algebras:

} 50 times

A=5U2)® SU(2T® . ® SU(2). (5.27)

The Lie-Poisson brackets in this direct product space are the obvious generaliza-
tion

50
JF 0G
{F(X),G(X)} = Zfiij;? -('-3.]—'” a—J;“ (5.28)

p=1

is coupled to the heat bath using the twisted method, resulting in
the equations of motion:

T = e Y [R(IE 4 TI) - (OA (M) — 9(€) B
50 - R S
. _ OA;(J*)
1 +1 R J
¢ a;wﬂf _“(Jf +J5 )AJ(J”)"“T_""'aJ:; | (5.29)
50 - -
: - 8B;(J*
E=8 e L | n(JY ‘+J;‘+1)B,-(Jﬂ)_T—~a’§T) :
p=1 - .

where i = 1,2,3 and o = 1,...,50. These 3 x 50 + 2 = 152 equations of motion
have been evolved in time, using the generalization of Eq. (5.8):

Al = (JE,TE T, B = (J¥,—Jt0), (5.30)

together with random initial spin configurations, a spin magnitude of unity, and
1, using two pseudofrictions. The degree of thermalization is judged
ity of the f({) and f({) thermal distributions, for which the exact
results are always known, shown in Fig. 12. Since this Hamiltonian is some sense
linear in the generators, it is highly regular, and in principle an additional friction
should be used to obtain a more rapid thermalization, such as the generalization
of the function C in Eq. (5.8). A typical measurement, such as the spin-spin
correlation function:

((-)S: Seqs) (5.31)

is shown in Fig. 13.
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FIGURE 12. Convergence of the thermal distributions of the pseudofrictions to

the exact result for 50 classical spins on a periodic chain. This can always be

used as a guide for thermalization for general systems under study.
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TABLE 3.

Structure constants of SU(3).

(i:j’k) fijk (i,j,k)

147,

123 1

D46,257,345
156,367

458,678

118,228,338

146,157,256,344,355
247,366,377

448,558,668,778
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6. HAMILTONIANS WITH SU(3) SYMMETRY

e algebra SU(3) is very useful since it contains the basic features
l algebra, while still being simple enough to allow exact numerical
ns. This symmetry is particularily fruitful in nuclear physics, as it
he algebra of quadrupole excitations, the rudimentary ingredient in
f collective nuclear structure.

SSICAL LIMIT

r to discuss the classical limit of SU(3), we first write the quantum
s

% ;] = ifie X, (i3, k =1,....8) (6.1)
s fully anti-symmetric, and its values are given in Table 3. There are

s, Xi, and two Casimir operators, (3 and Cj3, which are quadratic and

cubic in the

The classic

motion are

> generators, respectively. The commutators of €3 and €5 vanish:

| [X,‘, ézlg] =0. (6.2)

l limit [10] is then defined through Eq. (2.2), and the equations of
given by the Lie-Poisson brackets (z,5,k = 1,...,8)

. oH oH
Xi={X;,H} = TX,-XkC""k = Gii(X) 75— (6.3)
J

The classical space for SU(3) is an 8-dimensional Euclidian space spanned by the

coordinates

(X1, ..., X3), together with quadratic and cubic constraints (Casimir
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functions) C5(X) and C3(X). These functions have zero Lie-Poisson bracket with
arbitrary functions (Hamiltonians) of X, in analogy with Eq. (6.2)

‘ {Xi,Ca3(X)} = 0. (6.4)

Expliticly, ‘ 2(X) and C3(X) are written in terms of two fully symmetric tensors:
1 8
Cs | =6;X:X; = 2 ZX?,

1
Cs ﬁ EdiijinXk

1
% —54(2V3X3 +3v3Xs(X] + XI + X} + X})

~ 6VBXs(XT + X7 + X3) - 9X3(X? + X? ~ X? - X2)
- 18(X1X5X7 — X X4 X7 + X1 X Xe + Xsz.Xs)].

(6.5)

The values|of d;;; are given in Table 3.

Our SU(3) system can now be coupled to a heat bath using the methods
of chapter 4. However, the form of the Casimir functions makes the projected
method more prohibitive than the twisted method, since the gradients of these
functions would appear in the (projected) equations of motion. For larger al-
gebras, this can become quite cumbersome. Hence we use the twisted method.
The equations of motion for a system described by an SU(3) Hamiltonian H (X),
and coupled to a heat bath with two pseudofrictions, can be written using the
twisted method as:

X = Giy(X) (%{"; — 01(¢)4; - 9’2(5)31‘) ,

| . OH OA;

i ¢ = aGij(X) (Aj—aX,' ~ —--axi) . (6.6)
| : 0B,

¢ = BGi;(X) (ng—i— ﬁi’)
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6.2. EQUATIONS OF MOTION

The three-level Lipkin-Meshkov-Glick Hamiltonian is used to describe M
particles in three M —fold degenerate quantum levels. It has the general form

3 M 3 M 2
A 1
Hime = § :Ek (z :szakm) ~3 E Vi ( E a}:matm) ) (6.7)
‘ k=1 m=1} k=1 m=1

where ay; (ab) annihilates (creates) particle [ in level k. For simplicity, we
consider Vs = V' for k = I, Viy = W', k& # I. In terms of the generators of
SU(3), the LM G Hamiltonian can be rewritten as follows:

" 1 . . N " N ,\ N
Hime = 75 (2V3Rs(Br + By~ 255) — 3V(R3 — X2 + X2 — X2 + X2 - X7)

+ W(3X82 + 3)2'32 + 2@12) + 6X3(E1 - By) — 46’1(}.‘71 + By + Eg)),

| (6.8)
where Ei, Ey, E3, W,V are constants and Cy is the number operator. (The ex-
plicit relation between W,V in Eq. (6.8) and V', W' in Eq. (6.7) is not important
for our considerations.) Since the number operator € is an element of U (3) and
not SU(3), we put C; = 0 in Eq. (6.8) (this can be achieved by a simple trans-
lation in X). The classical limit is realized by simply replacing the quantum
operators by coordinates: X — Xj. If we choose

Ey=Ey = E;3, W=V, (6.9)

the Hamiltonian has the form

i B

| =3 [8Q2 + 3L2] : (6.10)

2
where @ and L are the quadrupole and angular momentum generators of SU (3).
These generators are given in Appendix B. Eq. (6.10) is a crude model for nuclear

collective excitations in deformed nuclei. Using the results of Appendix B, we
can write Hq. (6.10) in a computationally simpler form:
\

|4

H=3[C—X;-X{ - Xi]. (6.11)

Since Cs is %n constraint, only X3, X5 and X7 play a dynamical role in the Hamil-
tonian. We| will take Eq. (6.11) together with V = 1 as our Hamiltonian.
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The equations of motion of this system coupled to the thermostat are then
realized by choosing the vector functions A; and B;. A particular choice we have
used is given by

A= (2X3,-2X1,0, X5, — X4, X7, —Xs,0),

(6.12)
B = (Xs, X7, X3, X1, X3, X3, X4, X5).

We will also compare the results with two pseudofrictions to those using three
pseudo frictions. For this case we have taken a third vector defined by

C'=(X5,X3,X1,X3,X2,X4,X5,X7). (6.13)

Thie three choices A, B and C satisfy the condition (4.4) that phase space volume
is not conserved exactly:

80;
G:‘jgja #0, (6.14)

where O =4, B or C. Corresonding to these functions, we take the frictions

n(¢) = ¢, g2(8) = &, (6.15)

and when we use three pseudofrictions,

g3(e) = e (6.16)
This specifies completely the equations of motion and the thermal distributions.

It should be noted that the initial conditions specify the value of the Casimir
constraints, This corresponds to defining the representation of SU(3) to be inves-
tigated. Since, when integrating numerically the equations of motion the values
of the constraints begin to wander, it is necessary to periodically check and renor-
malize the position (X1, ..., X3) so as to preserve the constraints. For the spin
systems that we have discussed up to now, the renormalization of the spin vector
is trivial to perform. For higher dimensional spaces with more constraints, this
requires additional effort, which can be handled case by case.
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6.3. THERMAL DISTRIBUTIONS

We have studied the Hamiltonian (6.11), using the equations of motion (6.6),
the functions A and B in (6.12) and the pseudofriction terms (6.15). All of our
SU(3) simulations in this section have been done with the initial conditions

(Xla '"5$8, Caé)

= (—0.333,~0.45,0.984, 0.559, 0.189, —0.265, —0.595, —0.823, 0, 0),
% (6.17)

which has the corresponding constraints
Cz = 1.366, C3; = —0.297. (6.18)

The trajectory was evoled in time to the final time ¢ = 90000, using the param-
eters « = f = T = 1, and an integration time step of df = 0.1, In Fig. 14 we
present results obtained by binning the values of the coordinates X at each time
step. It is equally simple to determine f(Q) and f(L) instead of f(X), however
we are not interested in the details of this model at the moment.

The exact distribution functions can be found using the method outlined in

Appendix C. The solid lines in Fig. 14 correspond to numerical integration of
the thermal expectation values of X; for i = 1,3,4,6,8

8
F(X) = f T1 dX: d¢de 8(Co(X) = C3) 6(Co(X) = Co)e=H/T X, (6.19)
i=1
For X;, X4 and X7 the exact distributions are more difficult to evalutate, and
we have not done so.

The exact distribution for the pseudofrictions ¢ and ¢ are always known, and
these are compared to the results of the simlation in Fig. 15. The convergence
is clearly quite good. Further, if we histogram the value of the Hamiltoman, we
can compute the energy distribution f(E,T), at this temperature. This is shown
in Fig. 16. From distributions of this type, it is possible to determine the density
of states for this model by unfolding f(E,T) with the Boltzmann factor

| p(E) = T f(E,T). (6.20)

By piecing several overlapping distributions, f(E,T), f(E, T2),..., determined
at selected temperatures T;, the density of states p(E) can be determined over a,
wide range of energies for this simple nuclear model. In Figs. 17-18, we show the
results of the simluation for ' = 0.1. The thermal distributions can be seen to
undergo a strong change in character, and the energy distribution f (E,T =0.1)
is becoming peaked near the ground state energy.
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FIGURE 14. Comparison between exact and computed thermal distributions

for the simple nuclear collective SU(3) Hamiltonian H = Q?2/3 + L?/8. The
parametersjarea = 8 =T = 1.
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FIGURE 15. Comparison between exact and computed thermal distributions for
¢ and € corresponding to Fig. 14.
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FIGURE 16. Energy distribution of the nuclear Hamiltonjan, corresponding to
Fig. 14.
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FIGURE 1?. Same as Fig. 14 except T = 0.1.
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FIGURE 18. Same as Fig. 16 except T =0.1.
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FIGURE 19. Convergence comparison between two (dots) and three (solid)
pseudofrictions for the SU(3) Hamiltonian H = Q? /3 + L?/8. Clearly the addi-

tional frictions improves thermalization.
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6.4. Two AND THREE PSEUDOFRICTIONS

In principle, we are free to add as many pseudofriction functions as we want
to the equations of motion. In Fig. 19 we compare the results of simulations
using two and three pseudofriction functions. The dotted line corresponds to the
two pseudofriction (N = 2) case discussed above with 7 =-0.1. The solid line
corresponds to the addition of the third pseudofriction € listed in Egs. (6.13),
(6.16), with the same initial conditions together with ¢ = 0. As one can see,
the additional pseudofriction significantly improves the rate of thermalization.
The equilibrium value of < E > corresponds to the mean of the distribution
f(E, T =0.1) in Fig. 18.

In principle one can extend this discussion to a classical lattice in which each
site has an SU(3) internal symmetry group associated with it, in the same way
that we studied the classical spin chains. This provides a new technique to study
classical § U (3) lattice models at finite temperatures.

7. CONCLUSIONS

We have presented a method in which the canonical ensemble properties can
be computed for constrained dynamical systems. Since this method reduces to
our previous methods in I for the case of a trivial Poisson tensor, it is an approach
which is applicable to general dynamical systems. Examples of the method have
been drawn from systems with internal Lie algebra symmetries for the sake of
presentation. Extensions of these methods to other physical systems with con-
strained dynamics is straightforward. One clear advantage of the methods pre-
sented in this paper is their obvious generalization to non-equlibrium situations.
From our previous experience we expect that this type of approach will compare
quite favorably with the best existing scheme for computing equlibrium proper-
ties. In the case of the XY-model [9] we showed that the present approach
leads to a better handling of the so called critical slowing down than the hybrid
Monte Carlo method. On the other hand, on can safely say that the isothermal
(chaotic) dynamies is still in its infancy and its potential has yet to be explored.

Support was provided by the National Science Foundation under Grant Nos.
87-14432 and 89-06670.
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APPENDIX A

In this appendix we provide the details of the computation of the equations
of motion for the pseudofriction functions from the Liouville continuity equation,
using the twisted method. For a genera! Lie algebra in the classical limit, we
defined the equations of motion of the system plus heat bath in Eq. (4.3b) as

Xi = ciji Xy {%?—J— - g(C)Aj} : (4.1)

In the Liouville equation (4.8), we must compute the phase space derivative of
Xi. We will now see that, when using the twisted method,

DX,' BX;

D_-X:n. = 5:-X_£. (A-2)
By direct substitution, using Eq. (2.7), we have
DX;  8Xi < . .0X;
DX;  8X; QZ=:1 i €k 8X; (4.3)

Lets expand explicitly the term involving the sum in (A.3). Imserting (A.1) in
that term yeilds

n
0?H 0A;
YescimXm § ——— — — . 4
This term 1 ishes, independent of the term in the brackets. This is simply due
to the fact that the matrix ¢i;k X has a zero eigenvalue when contracted with a

gradient of a Casimir function. From Eq. (2.12) we found that

oc™
0= Cijkmxk g](X)1 (A5)
where Gj(X) is an aribtrary function. So equivalently we have
0 = cijrel Xy Gi(X). (A.6)
Thus we establish (A.2). The Liouville equation is now
o OFXi) | .0f
0="0x; <%

94, 10H 1 ,9G(¢) (4.7)

= ¢ijr X (—g(C)aX‘, - fa—)ag(C)Aj) ~ T o

Here we have used the ansatz d(/d¢ = 0 and the distribution f given in Eq.
(4.5). Solving this for { then gives the results of Eq. (4.13).
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APPENDIX B

The rérlation of the generators of SU(3), which satisfy {Xi, X5} = fije X,
to the spherical tensor components of the quadrupole tensor @, and the angular
momentuljn operator L, introduced in chapter 6 is given by

QU == g’XS,
V3 .
1 = —?(X.; + 1 X5s), Lo = 2X,,
@ =-L(Xetrixy,  h=—VAxi-iX), (B
V3 L_1 = V%(X7 +iXs),
Q2 = —2"(X3 + iX]),
Q= —\?-(Xa —iX1).

|
These generators satisfy the usual Elliott SU(3) commutation relations, or equiv-
alently, Lie-Poisson brackets:

| {Lu Lo} = —vV2({1plv | 1p) L,
(@00} = 2 0 (1)1, (82)

{Qu I} =~V (2u1v [20)Q,,

where the éymbol in braces is a Clebsch-Gordan coefficient. The Casimir opera-
tors are

G =3 [208 - 220) + 203 - 20101 +2020.0)]

Cy = __F% [2\/§Q0 (9L — 8Q32 + 48Q2Q—2) + 6vV2Qq (3L, L_; + 8(1Q-1)
—18vBLy (L1Q_; + L_1Q1) +18V3 (L3Q_s + L%,Qs)

—48v3 Q20 + @2Q%))|.
(B.3)

51



APPENDIX C

|
Integration of the SU(3) Hamiltonian can be performed numerically if we use
the variables introduced recently by Johnson [12]

X3 =p1,
: Xs = pa,
VXP+ X2+ XE=p,

X1+ iX; = exp(iq1 )1/ p3 - p?,

Xs+iX5 = exP[%(Q‘l +V3a2 + 3)lVps + p1A (C.1)
+ exP[%(‘h +V3q2 — ¢3)}v/ps —~ 1 B,

X +iX7 = eXP[%(—ql +V3g2 + 43)lv/ps — p1A

— exr)[%(—m +V3¢: — ¢3)]v/ps + ;1 B,

where |
_ 1 (P-Q Pz P +2Q P2y 2P+Q P2y
1,Q-P P2\ P +20Q p2\ 2P+ Q P2 \11/2
B=—— -2 -p;+ = - S
P Y L e L BT e )
(C.2)
Here P, Q) are linked to the Casimir functions as follows:
| 1
| Cr = 5[P* + @ + PQ),
1 (C3)

Cs = 2-(P - Q)(2P + Q)(P +2Q).

The § U(3) measure (for the algebra, not group) can be written as

P+ Q)P
dXydXe = EEDPQ b dandiidpadpsdPag) (C.4)
| 163
\
In the new|coordinates, the constraints C3 and C; are related only to P and Q.
Integrals over the phase space then only depend on the six coordinates p; and gi.
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|
Integration over the SU(3) measure (for the algebra, not group) can done if we
define

u = (V3q + 43)/2, v=(vV3q — g3)/2, (C5)
where 0 < u,v,q; < 2. For the p;, define
D2 )
=—=+ ’ T = —=—p3. C.6
w \/§ P3 \/3— 23 ( )

The limits of integration of w,z are determined by the roots of A,B in (C.2).
These are in turn related to the Casimir functions (C.3) through the initial con-
ditions, p; has the limits —p3 < p; < P3.
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