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ABSTRACT

. Damping of nuclear collective vibration8 is studied on the basis of a Boltzmann-type
trapsport equation with memory effects. It is shown that the memory effects play an
essential role for a proper treatment of the dampégg properties of collectivevibrations. A
simple analytical formulais derived for the spreading widths at finite temperatures which
provides a reasonable description for the gross properties of the damping of giant dipole
and giant gquadrupole resonances over a broad range of nuclei.

In order to describe damping of collective nuclear vibration8 (giant resonances)
several approximate procedures have been developed in recent year8 [1-2]. In particular,
the linearized limit of the extended time-dependent Hartree-Fock (TDHF) theory provide3
a convenient framework for describing both the structure and the damping of collective
vibiations. However, it wag pointed out several years ago that the memory effects in the
collision term of the extended TDHF equation must be taken into account for a proper
treatment ¢f the damping widths [34]). In medium mass and heavy nuclei, the
oveiwhelmiﬂg contribution to the damping widths arises from the collisional spreading of
the collective state due to decay into two particletwo hole states. Without taking the

memory effects into account, the collisional damping is severely understimated and
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in fact it vanishes at zero temperature in the linearized limit of the collision term [5]. In
the present work we calculate the spreading width of collective vibrations due to collisional
daﬁnping in the basis of a semi-classical transport equation with a memory dependent
collision tetm. We obtain a simple analytical expression which provides a reasonable
description for the observed damping widths of isoscalar and isovector giant resonances in
medium mass and heavy nuclei at zero temperature, as well as at finite temperatures.

The structure of giant resonance excitations can be very well described in phase-
space as scaling vibrations with associated momentum space distortions [5-8). Here we
wish to study the damping properties of giant resonances rather than their full description.
For this pui:pose it is sufficient to consider the distribution function f(p,t) in momentum
space and calculate the relaxation rates for distortions of various multipolarity. First, we
discuss the isoscalar vibrations and in the next step, we extend the treatment to the
isovector modes. For simplicity, we consider a homogeneous system with a sharp surface,
and assume that the spin-isospin averaged momentum distribution is determined by a

Boltzmann-type transport equation with a memory dependent collision term as [3],
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where all the occupation factors f; = f(p;,t) are evaluated at time t—7, Ae = e3+eq—e1—ez

and W denotes the spin-isospin averaged transition rates

W =i - o1+ 36 &prtprpspd) (2)

wit];l g = 4/as the degeneracy factor. Usually a Markovian approximation is introduced



into the collision term by neglecting the r-dependence of the occupation factors in the
collision term (memory effects), then the time integration over history gives rise to two-
bo&y energy conserving transition rates with &(Ae) in the collision term. However, the
Markovian approximation breaks down in situations when the characteristic time of the
occupation i‘actors f(p,t) is in the same order as the memory time of the collision kernel in
eq. (1) [3].: Giant resonance excitations constitute such a situation in which the nuclear
density in ljoth r-space and p-space execute small amplitude, high frequency vibrations of a

certain mul_#ipole shape.

For describing damping properties of small amplitude vibrations, we linearize the

memory dependent transport eq. (1) around a finite temperature equilibrium f,(p),

1(p,t) = £a(p) + B(p.t) = £u(p) + X(Pt) I fo 3)

where

x(pt) = a,(t) p" P, (§)

= (a, el c.c.) p* P (9) (4)
characterizes the multipolarity of the distortion of the momentum distribution from
spherical equilibrium with PL( f) as a Legendre function, and Q is, in general, 2 complex
frequency of the harmonic vibrations. In the linearized limit, since the time dependence of
the occupation factors are known explicitly, the time integration over history in eq. (1) can
be done, and the memory incorporated linearized transport equation becomes
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and 6F is obtained from eq. (6) by interchanging the indices as 13, 2+4. An expression for
the collision rate similar to the linearized collision term in eq. (5) was proposed by Landau
under the aésumption that a finite energy is lost during a binary collision [9—10].

We define the relaxation rate of the distorted momentum distribution as [11],

1 _ fdsp x(p) K,
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where Ax = x1 + X2 — X3 —x4 With xj = x(p;). In obtaining this result several terms have
been combiped using the symmetry properties of the collision term, and we insert a
suqscript "q" which refers to the situation that 7, is the relaxation rate for the isoscalar
modes. Incorporating the memory effecis in the transport eq. (1) enforces the energy
conservation between the collective state, with energy W2, and the more complicated two
pu&id&twa hole states in the relaxation rate, and properly accounts for the available
phase-space for damping. On the other hand, the Markovian approximation consists of
rep}a.cing the proper energy conserving factor §(A Q1) with & Ae) in eq. (7); consequently,
1;hej resulta.xit expression severely resiricts the available phase-space for damping. In
particular, at zero temperature all two-body collisions are Pauli blocked and hence the

mllhsionﬂ width vanishes in the Markovian approximation. Using the fact that transitions



are concentrated around the vicinity of the Fermi surface, and employing the standard
coordinate transformation [12], the energy and angular parts of the momentum integrals in

eq. (7) can approximately be factored as

3
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and the angular part of the integral with the notation of ref. [12] is given by

fd0, da dg(cosd )" w (ap))’
fdap;

with AP, = P (6) + P (82) - P, (63) — P (64). The factorization of the energy and
anghlar int¢grals introduces about 10% error in the calculations of the relaxation rates.
For temperﬁtures which are small compared to the Fermi energy, the energy integrals in

eq. (8) can be done exactly [13], and we find

1 _ [.12“_]3[%15,2 m+§,2 11|1, . (11)

In order to describe the damping of isovector modes we need to generalize the
previous treatment by distinguishing proton and neutron degrees of freedom in the
relaxation process. The relaxation of the momentum distributions of protons and neutrons

are determined by coupled transport equations,



gf fp(p:t) = Kpp(f) + Kpaf)
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where Kpp, Kpn, . . . are the memory dependent collision terms between protons and
neutrons, which are given by expressions similar to the collision term in eq. (1). In
isogcalar modes, proton and neuiron distributions vibrate in phase with the same

amplitude,

fp(pt) = +Ea(D,t) = a, (8) p"P(0) &1, (13)

whereas, in the isovector modes they vibrate out of phase,

ttp(p,t) = ~fa(p,t) = ,(+) PP (0) & 5o (14)

The equatién of motion describing isoscalar vibrations is obtained by linearizing eqs. (12)
and adding them side by side, &fs = of, + ofy,

giéfsgms=1pp'&+Inn'&+lpn'&f+1np'6f (15)

where Ipp, Ipn, ... are the linearized collision kernels corresponding to the collision terms
Kpg,, Kon, in eqs. (12), and the distortion of is given by eq. (13) for protons and
neutrons. This is the same equation, eq. (5), that we use to describe the damping of the
isoscalar vibrations in the previous section. The equation of motion describing the
isovector vibrations is obtained by subtracting the linearized version of the coupled

transport eqs. (12) side by side, &, = 8fp — &y,
.
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where the ciistortion &f is given by eq. (14) for both protons and neutrons. The relaxation
rate 7y for an isovector distortion is defined by replacing 6K, and &; in eq. (7) with the
cortrespondihg quantities §Ky and #f,. Performing energy integrals, we obtain for the
relaxation rﬁte,

L@ [ Q24 2e Tz]x (17)
where the angular part of the integral, with the notation of ref. [12)], is given by

fa0: a0 dp (cosy) ' [Wpn (AP))' + Wipn (AP,)]

b= fdn P’ (18)
L

with AP, = P (#) — P (6;) — P, (6s) + P (1), Wpn = (Wpp + Wan)/2. Here Wiy,
Wiin, and an are the transition rates for proton-proton, neutron-neutron and proton-
neutron collisions, respectively, which are determined by the corresponding scattering
cross-sections as in eq. (2) with g = 2.

Egs. (11) and (17) allow us to calculate the relaxation rates for distortions of any
multipolarity, and hence determine the spreading width of collective vibrations at finite

temperatures using the relations
P5='— a-nd Fv=—. (19)

Here we consider a few lowest order isoscalar (L = 2,3) and isovector (L = 1,2) vibrations.
Assmm.mg 1s1otrop1c scattering cross-sections, the relevant angular integrals I; and I, in egs.
(10) and (13) can be evaluated analytically, and we find simple analytical formulas for the
spreading widths. The formula for the width of isoscalar quadrupole and octupole



vibrations (L = 2,3) is given by

=t ()3 (2) g

where g5 = (opp + Onn + 20pn)/4 is the spin-isospin averaged cross-section and p, v
denote the nuclear matter density and Fermi velocity, respectively. Similarly, the formula

for the spreading widths of isovector dipole and quadrupole vibrations (L = 1,2) is given by
2 )
Te=tyfroven |[F]' 3+ (3] (21)
F

where oy = opn/2 for L = 1 and oy = (opp + oun + 20pn)/4 for L = 2. The effect of
pa.qtial cangella.tion between particle and hole amplitudes of the collisional damping is
a.uﬂomatica]jily incorporated into eqs. (20) and (21) for the widths [1-2]. In particular this
cancellatioﬁ becomes complete for the isoscalar monopole mode as seen from the fact the
angular integral Iy in eq. (10) vanishes for L = 0. As a result, the spreading width of the
monopole vibration vanishes in the linearized limit of the collision term in eq. (1).

. We apply the formulas (20) and (21) to describe the damping of isovector giant
dipole and iboscalar giant quadrupole resonances. In numerical calculations we use a Fermi
momentum of kF = 1.34/fm to obtain the Fermi energy, the Fermi velocity and the nuclear
matter dengity as €, = 37 MeV, v = 0.28c and p = 0.16/fm3. For numerical calculations
we also need the cross-sections app, onn, and opn. The largest contribution to the damping
comes from the collisions of nucleon pairs with relative momentum close to the Fermi
111oine11tum.5 In the calculations we use free space cross-sections at this momentum, opp =
Opn & 25mhf> and opy ~ 50mb, which give a spin-isospin averaged cross-section of ¢ =
37.5mb. Figure 1. shows the results of calculations and a comparison with the measured

da.niping widths of dipole and quadrupole resonances at zero temperature as a function of



the atomic mass number of nuclei. For the mass dependence of the resonance energies for

spherical medium mass and heavy nuclei we use the formulas
n, = 804/ 'Mev, m, = 64"/ "Mev . (22)

The mass dependence of the damping widths in the calculation, A-al 3, arises entirely from
the mass dependence of resonance energies [14]. As seen from the figure, except for light
nuclei, calculations describe rather well the average trend of damping widths of giant dipole
and giant qeadrupole resonances over a broad mass range. The over prediction of widths in
the lower mass region is mainly due to the effects of direct nucleon emission which is
neglected in the calculations. In principle, the energy integrals in the decay rates, eqgs. (8)
and (17), must be restricted to the bound single particle states which substantially reduces
the collisional damping in light nuclei. In addition to the collisional damping, the escape
with I'f due to direct nucleon emission must be incorporated into/ the calculations. The
escape width is only a small portion of the total width in medium-mass and heavy-nuclei,
but increases with decreasing mass of the system [1—2]. Figure 2. shows the calculated
spreading width of the giant dipole resonance in 1983n, in comparison with the experimental
daﬂa as a f{mction of excitation energy E* which is related to temperature through the
relation E* =aT? with a = 1r2A/4eF. Both the experimental and the calculated widths
increase linearly with excitation energy, but the slope of the calculated curve is somewhat
smaller than the experimental one. This behavior is again due to the escape width which is
not included into the calculations. The escape width is small at zero temperature but
increases with excitation energy, and it must be incorporated into the calculations for a
proper description of the damping widths at finite temperatures. The calculations of
damping widths including the effects of direct nucleon emission and the escape width will

be presented in a subsequent publication.
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In symmary, we have presented a transparent study of the collisional relaxation of
nuclear collective vibrations on the basis of a Bolizmann-type transport equation. It is
shown that for a proper treatment of the damping properties of small amplitude high
frequency collective vibrations, it is essential to incorporate the memory effects into the
collision tenm of the transport equation. We have derived a simple analytical formula for
the spreading width of isoscalar and isovector resonances in nuclei at finite temperature.
Our calculations provide a reasonable description for the gross properties of the damping
widths of glant dipole and giant quadrupole resonances at zero and at finite temperatures.
Some shortéomings of the calculations can be attributed to the escape width due to direct

nucleon emission which has not been incorporated into the calculations yet.
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FIGURE CAPTIONS

The atomic mass number dependence of the damping width for the giant dipole
resonance (upper part) and the giant quadrupole resonance (lower part).

The excitation energy dependence of the damping width for the giant dipole
resonance in 1938n nucleus.
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