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Abstract

We develop a semiclassical coupled-channels calculation for the Coulomb break-up of

loosely-bound nuclei. The continuum wavefunctions are discretized by means of two differ-

ent sets of strongly peaked functions: (a) a histogram set, and (b) a continuously derivable

onb. Using simple expressions for the bound- and continuum-wavefunctions, we calculate

the break-up probability to first-order and with the coupled-channels method. First-order

perturbation theory is shown to fail to describe the Coulomb break-up of unstable projee-

tiles, as 1! [< at small impact parameters. It is shown that a non-perturbative calculation

may reduce the cross section by 20% in collisions at intermediate energies.
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1. Introduction

- Couloinb excitation of unstable nuclei is a very useful technique to access information
on|the sthture and excitation response function of such nuclei. This is especially true for
thé study qf neutron- or proton-rich nuclei with very small binding energies. Such studies
have been performed experimentally during the last years, resulting in the finding of new
and intriguing aspects on their properties!+2),

Many t:)f the exotic nuclei, like ' Li do not have a bound state besides the ground state,
i.e,, any ex¢itation leads to their fragmentation. The Coulomb fragmentation cross section
is li'oughly ihversely proportional to the separation energy of the fragments?. Therefore, it
cam be very large for weakly-bound projectiles incident on large-Z targets. Indeed, exper-
imental studies on the breakup of weakly-bound nuclei have shown that the contribution
of the Cou‘lymb interaction between the nuclei results in cross sections of several barns at
boijnba.rdin?g energies of some tens of MeV per nucleon, and higher!?), That is an order of
ma‘,gnitude :la,rger than the nuclear contribution to the process ).

| One should expect that perturbation theory fails in describing the breakup process
wﬂen the ch"oss sections attain very high values. In fact, as we show in section 2 of this
a.rtpcle, the break-up probability calculated with first-order perturbation theory is close to
unity. Thxs‘ca,n be understood with use of simple arguments. The energy transfered by the
CoLlomb ﬁpld to the excitation of a projectile nucleus, with N neutrons and Z protons,
inciident wijlzh velocity v on a target nucleus with charge eZ7 at an impact parameter b
is approximately given by® E* = 2(NZ/A)(Zre?)? /myb?v?, where my is the nucleon
m#ss. For ?“Lz' projectiles (N = 8, Z = 3) incident on lead at b = 15 fm and v & ¢,
one gets E* =~ 0.3 MeV. This energy is more than sufficient to break 'L; apart, since
the sepa.ra,t!on energy of two neutrons from this nucleus is about? 0.25 MeV. This means
that, at small impact paramenters the break-up probability is of order of unity and a
non-perturbative treatment of the break-up process should be carried out.

3 Non-perturbative techniques like semiclassical coupled-channels calculations can be
useld in th151| case. However, there are not many experimental data which justify a compli-
catbd calcuiatlon with many details about the structure of the unstable nuclei. Since this

is 11he final knformatlon that one wants to obtain, a clearer understanding of the reaction
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mechanism is more useful at this stage. The cluster model®) seems to be very appropriate
to achive tilis goal. It has been used with success for the determination of the main char-
acteristics of reactions induced by ! Li projectiles®). Owing to its simplicity the matrix
elements of Coulomb break-up can be easily calculated.

This article is organized as follows: In section 2 we present a calculation of the Coulom-
b break-up of loosely-bound clusters based on first-order time-dependent perturbation the-
ory. We show that it fails to describe the Coulomb breakup probability at small impact
parameters. In section 3 we present a coupled-channels calculation of Coulomb break-up,

using discrete states built on continuum wave functions. The discretization procedure

deserves special attention and we use two different sets of basis functions; a smooth and

a step-wise one. In section 4 we compare the results of a numerical calculation of the

coupled-channels equations with the first-order results. Our conclusions are give in section

5.

2. §Coulori1b break-up of loosely-bound clusters

Let us|consider a projectile nucleus composed of two clusters with charges eZ; and
eZ;, and masses m; and m,, respectively, inciding on a target with charge eZ7. We assume
that the projectie follows a straight-line trajectory with velocity v and impact parameter b.
The interac?tion potential (neglecting magnetic interactions and nuclear forces) responsible

for the break-up of the projectile, is given by

V =y2ré [ Z > /2 ~ Z L 1/2] (2.1)
S = Y )

where v = (1—v2/¢?)~1/? and y, i represent the transverse and longitudinal coordinates
of the particles, respectively.

In the dipole approximation, the expression (2.1) becomes



’ vZre?
V= Zk(byk + qutzg
(82 + y2v2t2)3/2 kg,,c )

| 27 vZre? me ms
|V 3 (B +2022)32 (Zb me Ze m,,)

r {ib [Yu(f') + Yl-—l(f')] + \/i’ythm(i")} , (2.2)

where r is the vector from b to ¢ and m, = mj + m.. The first (second) term inside the
curly brackets represents the transverse (longitudinal) part of the interaction.
In first-order time-dependent perturbation theory, the probability amplitude for the

projectile hreak-up, i.e., the transition from the ground state | 0 > to a state | @ > in the

continuum is given by

t
1 —iE,— !
0= [ _eTEE qy(e)0 > di (2.3)
For logsely-bound projectiles the ground state can be represented by an Yukawa wave-
function ¢o(r) = N e~""/r, where N is the normalization factor, and n = \/2as. B [k, with

m,tequa.l to the reduced mass of the (b + ¢)-system and B the binding energy. Neglecting
fin

state interactions, the states |q > are given by ¢q(r) =< r|q >= €4 4 ¢4 /r(n+iq),
where the \irave number ¢ is related to the energy E, as E, = A%¢2/2u,.. The second term
of K rlq > guarantees the orthogonality and completeness of the initial and fina! states.

‘ The leOle matrix elements are given by®)

< Q|'l".Y1m(I')|O >=14 27!' (—+—'—)— lm(Q) (2 4)

‘ To ﬁrst order, the breakup probability is obtained by integrating the square modulus
of t2 3) ovel'r the density of final states, i.e.,

1 — (1 (1) (1)
PW(b, 1) = 2P0 4 p) /|(q) o )3, 2.5)

suﬂrxmed ov#r the beam-axis components of the angular momentum carried by the Coulomb

ﬁelb, m =10, *1. The integral over g is easily accomplished if one uses the sudden
approxima 'ion, which is valid for

iv (E;,+BY< 1. (2.6)
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For wea,kly;-bound nuclei, as 1'Li, E; + B 1 MeV, and at bombarding energies Ep .5 ~
1 ¢ eV, the.r above relation shows that the sudden approximation is valid for impact pa-
rameters b I< 300 fm.

WlthllL
mﬂegra.ls ca,n be evaluated analytically as (« is the fine structure constant)

| : Zrac\? m mp \ 2
| - POy, t)--( 7;)”) (zb m“-zc ;?-)

Th

st (second) term inside the curly brackets arises from the transverse (longitudi-

the sudden approximation we can omit the exponential factor in (2.3) and the

nal) part oﬁi’ the interaction potential (2.2). It is clear that only the transverse contribution
survives at|t = co. The longitudinal contribution cancels since the component of the elec-

tric field aléng the beam axis is an odd function of time. The breakup probability at ¢t = oo

PO, oo0) = 2 (Z:rac)2 ( mh)z_ (2.8)

n b mg My

For ng,zing collisions with heavy targets at high energies the breakup probabilities of

is given by

eq. (2.8) a.#e close to (or even exceeds) unity. Therefore, first-order perturbation theory
cannot be Psed. However, if the sudden approximation holds a non-perturbative closed
expression }ca,n still be derived. The amplitude can then be written as [neglecting the

lorigitudinail component of the interaction potential {2.2)]

i o0
“g; =< q exp{;% / V(t)dt}]O >=< g exp{—iCr sin 8 sin ¢}|O >, (2.9)
whpre
2Zrac myp
¢= z:, ( — — ) (2.10)
Using 1::he completeness relation
. * 1 *
do(r) d5(r") + (2—‘”)3- ]¢q(r) pq(r)d?q = 6(r - 1) (2.11)
one finds
()_ |(q)| (2 )3""‘ _m T T2 € . (. )




The above integral can be easily evaluated and the result is

| PO(py=1— 401: [arctg(%)] ' (2.13)

Wpen C/2y <« 1 (large impact parameters) the above relation reproduces the first-order
reiult (2.8)i If on the other hand if C/n is large one gets, to lowest order in n/C,

2.2
. S@py=1-21
PO =1- 1]

(2.14)

A compari40n between the sudden approximation and the first order break-up probabilities

for the reaction 'Li + Pb — ®Li + 2n + Pb at 100 MeV /nucleon, is shown in fig. (1) as

a fpnction pf b. The failure of the first-order approximation at small impact parameters is
clejb,rly seex{.

" The re&sults of eqs. (2.7), (2.8) and (2.13) were obtained on the basis of the sudden
approximation. In the example considered, the ' Li break-up probability is appreciable
even for lazge relative energies in the projectile frame (Eq ~ 2 MeV), where the sudden
approximaftion starts to break-down. In addition, the treatment of this section cannot
ac%ount foréthe energy distribution of the break-up cross section. A more powerful coupled-
channels treatment is therefore desirable. However, one faces the difficulty that the final
stis are 1h the continuum (one would have to consider a continuous channel label) and
th couphqg matrix elements present divergency problems, caused by the non-localized
bei-avmr 04 the continuum wavefunctions. This difficulty is avoided by a discretization
of #he contiinum along the lines proposed by Bir and Soff*) in their non-perturbative
ca.I%culations of atomic ionization by heavy ions. In the next section we use a similar
treatment of the continuum and develop a set of semiclassical coupled-channels equations.




3. Discreﬁiization of the continuum and semiclassical treatment of the coupled-

channels problem

Our basis of time-dependent discrete states are defined as

|go > =€ PotP0> | with E,=-B

|bitm > = emiEst/h / Ti(E) |E,tm > dE (3.1)

Where |E,l{m > are continuum wavefunctions of the projectile fragments (without the
ini;1 raction|with the target), with good energy and angular momentum quantum numbers
E, f, m. The functions I';(E) are assumed to be strongly peaked around an energy E;
in fhe continuum. Therefore, the discrete character of the states |¢;m > (together with
|¢g >) allows an easy implementation of the coupled-states calculations. We assume that

the projectile has no bound excited states. This assumption is often the rule for very

loasely-bound systems. The orthogonality of the discrete states (3.1) is guaranteed if

f dE T{(E) T';(E) = §; (3.2)

' For thqfe continuum set |E¢m > we use, for the sake of simplicity, the plane wave basis

5 3/4 1y
%) Erie)Ym® 639

which obey! the normalization condition (E =K /2p)

< r|E£m >= Ug,E(T) ng(l‘) = (

< Etm|E'f'm' >= 6ep bm 6(E — E') . (3.4)

Thbse stateis arise from the partial wave expansion of the plane wave exp (¢q.r). Writing
th time-dépendent Schrédinger equation for ¥(¢) = E,‘ @jtm . Pjem, taking the scalar

product with the basis states and using orthonormality relations, we get the equations

da; i( E}
z’fi—gc‘;:l — z Vitmjt trmt @ ot e~ E; —E;)t/h (3.5)

jltl m!

WJ use the index j = 0 for the ground state |0 > and j = 1,2, .. for the discrete continuum

sta#es. Vitnl;j*erm+ are the matrix elements < Piem|V|djpm >.
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For I'j(E} we consider two different sets of functions. Firstly theset I'y(E),...,T ~{(E);

Ti(E) = -{;-?, for (j-1)0<E<jo

| =0,  otherwise. (3.6)
This set clrresponds to histograms of constant height 1/1/c and width o. The states
Fj(E) trivially satisfy the orthonormalization condition of eq. (3.2). They present the
a,d'irra.nta.ge d)f leading to simple analytical expressions for the coupling matrix elements. On
the other hihnd they have discontinuities at the edges, which lead to numerical difficulties.

TIT secon(i set consists of the functions

| B\

‘ ‘ X;(E) = Ny, (;) T emmi(Blo) (8.7a)
The normalization constant

3 1 (Zn ,)‘2n§+1 1/2

| , N, =L [_",___ , 3.7b

| i YT Ve | (2nd) (3.7)

gu‘ antees ;H:ha.t J x;(E)x;{(E)dE = 1. The functions X; are peaked at E = n; o and have
width =~ cr.! The integer n; = K.j is proportional to the index-j and the proportionality
constant, a!small integer K, is a parameter of the set which determines the overlap of two
coﬁsecutivé functions x; and y;4+1. Three consecutive functions x4, x5 and ys are shown
in fig. (2a) for K = 3 and ¢ = 40/3 keV. With this choice xs is peaked at the maximum
of the experimental break-up cross-section (E = 250 keV') of ! Li projectiles (see fig. 5).
However, this set fails to satisfy the orthogonality condition of eq. (3.2). This shortcoming
ca.rli be ﬁxed;l by the definition of a new set I';(E) of linear conbinations

|

N
| Ti(E)= 3" Cixxa(E), (3.8)
. k=1

with the c&aefﬁcients Ci; determined so that the resulting combinations be orthogonal.
These coeﬁ;icients can be found by means of an orthogonalization procedure as, e.g., the
GrFm-Schn*idt method®). The result of the application of this method to the functions

8



of fig. (2a) is shown in fig. (2b). The set of eq. (3.8) has the advantages of beeing
coi}tinuously derivable and of leading to reasonably simple coupling matrix elements.

A comparison between basis states @;m(r) generated with each of these sets [through
eq{ (3.1)] 1s made in figs. (3a) and (3b). We chose for convenience the parameters
o TL- 40 keV;*, J = b for the first set (eq. 3.6) and K = 3, j = 5, ¢ = 13.3 keV for the second
seli (eq. 3. 'if) With this choice one of the E; is equal to 200 KeV for both sets. We take
£ | 1, m =1= 1, as example. One observes that the discrete wavefunctions P jem decrease
fastly enough with r, so that the matrix elements < $iem|rY1,)d e mt > are finite. The use
of the hlstqgrams (3.6) for I';(E) leads to beats in ¢;ss as displayed in fig. (3.a). These
beats are t:he result of the discontinuous nature of I';( E) and arise from the interference
from the b. rders of the histograms. Due to this behaviour, the numerical evaluation of
< ¢jtm|TYf |$jterme > is more involved than with the second set of I';-functions, (3.8).
Indeed, as lwe see from fig. (3.b) the beats disappear with the use of the basis set (3.8).
Although the use of plane-wave basis allows the derivation of simple results with both sets,

this fact is of relevance for future improvement of the calculations.

Using ![3.1) and the properties of the spherical harmonics one finds

(=™ 9 mp V(2E+1) 200 +1) [e1¢8
Vitmjoprm: = 72 YZre Z . Z M, (B2 + y20u212)3/2 000
. e 1¢ £ 1 7 12
Q) (A e (410 e
(3.9a)
where |
Lieye = / 3 dr / dE T(E) / dE' Tji(E') uj p(r)ue, pr(r) (3.95)

From (3.9a) one deduces that the interaction potential is different from zero only if [{—¢'| =

1, ‘ expected. A discussion of the use of the dipole approximation is presented in the

next sectio
The u;e of the plane wave basis is especially useful because, exploiting the recursion
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anﬂ closure relations of the spherical Bessel functions, one obtains the general result

h? {e+e'+2

Litye == 5 Fis Hore1Gijr +bevr,e G,-:,-} : (3.10)

i
where !

| Fijr = / dg T';(E) T';(E)

Gis = [ da g T(B) £T5(E) (3.11)

with E = #%¢?/2u. Explicit forms can be found for each basis set:
(a) Histogram - Applying this relation to the histogram set (3.6), one can show that

for j, j'#0
el RV | if j = j
[2 —
Tigjo =h #—a _(.__1)(J+£—J —£) /2 ;i;z_—l if |j — ' =1 (3.12)

0 otherwise

Forj=0 ar j' = 0, only the integral with €, or £ =1 is necessary, and the result is

Ioo; 1 = Ij1, 00 =

3/4
2no Ej/ (h2)3/4 (3.13)

m  (Bo+E;)? \2u

where E; = (j — 1/2)0.
i (b) Continuous basis - For the set of continuous energy functions (3.8) one finds, for

5h3'#0

. 1Y
Fip\ _ fpo I(n? +n'? +1/2)
{ G.. } = 2? Z Cjn lenr Np Ny (n n nl)n’+n"+1/2 on’ _ nl(2n2 + 22 + 1) i

[ !
ol | n.n n+nt

i (3.14)

where I'(2) iis the gamma-function and we simplified the notation using n = n;. For j =0,

or j' = 0, ope finds

3/4 2% 3/4 9 2
_ . +/2no Ej h n?l  [(2n)m41
Too; j1 = Iy, 00 = r (Bot E;7 (2#) Eﬂ T (2n?)] Cin. (3.15)
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In the next section we will make use of egs. (3.9)-(3.15) to solve numerically the
coupled-chpannels eqs. (3.5). As we have seen above, the use of the plane wave basis (3.3)
regults in tgelegant derivation of Ijs; j+¢ presented by egs. (3.10) and (3.11). Nonetheless,
the s-wavel(£ = 0) state of eq. (3.3) is not orthogonal to the bound-state wave function.
To restore prthogonality one has to add an extra piece to this function. We expect however
that this a.lpproximation does not affect our results appreciably since to access this state
one needs at least two transitions: the 0 — ;1 followed by the j'1 — j'0 one. But

the later transition competes with the transition to the ground state, j1 — 00, which is

the dominant one. A more severe restriction is the use of plane waves to describe the

co tinuum_ A realistic calculation would have to use outgoing waves for u(+)(r) which

would carry information about the final state interactions of the (b + ¢)-system.

4, Results and discussions

In thisisection we use the theory delineated in the last section to study the break-up of

M Lipro jedtiles incident on heavy targets at energies around 100 MeV /nucleon. In figure 4

we show the integrals Iji. ;v for the continuum-continuum coupling (7,7' # 0). In particular
welchooseﬂ; = 0 and ¢ = 1. The coupling j0 — j' = j, 1, shown in fig. 4.a, is a reorientation
eﬁlct in wl:Lich the transition involves only a change in the angular momentum (£=0to
£=1in thhs case) of the state. In the figure 4.a we plot I;.;1, for a transition between
states w1th‘ different energies. In particular we take the transition between neighboring
states, w1th J' = j + 1. We use the results obtained with the continuous energy set, egs.

(3.[14) and (3.15). One observes that while the integral for the jj-coupling decreases with
energy, the@ one for the j,j + 1-coupling increases steadily. These results reproduce the
trend showip by eq. (3.12). In figure 4.b it is shown how Ijo.;1 varies as a function of E;,

for\a fixed E, = 0.2 MeV. One obeserves that it is maximum for neighboring energy states

a.ndi has an psc1llatory behaviour. This has as a consequence that the j, ;' # j- -coupling will

practically tnot contribute to the total break-up probability, P( B) since its contribution
be wa.shed out.
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The brlea.k-up probability per unit energy interval, P(%I)J, is given by

PE = ZF-‘(E) L5(E) Qi; (4.1a)

wihere
| Qij = Re [Z itm ajtm] : (4.1b)
' £m

In figure 5 we show the break-up probability per unit energy interval for the reaction
¢t + Pb at 100 MeV /nucleon and b = 15 fm, calculated from eq. (4.1) by solving the
coupled-differential eqs. (3.5) for aigm. We see that the energy distribution of the fragments

11

is i)ea,ked ai: E ~ 0.25 MeV. Therefore, the most relevant momentum transfer to the 111
n\ifeus ocdurs at 9 = \2mB/h ~ 20 fm~!. The validity of the dipole approximation
fo | the interaction potential (3.9) to calculate the continuum-continuum coupling can only
bej justiﬁedé for gr <« 1. But, as shown in fig. 3, the discretized wavefunctions extend
up
eq.

to 400 fm. Thus, unless the matrix elements for the continuum-continuum coupling,

(3.9b), have its main contribution from r € 20fm, the dipole approximation is not
valhd The Ji-coupling do satisfy this requirement. In this case the wave functions have
eqﬁal energies, but different angular momenta. This causes an assimptotically (r>1/q)
constant p]!'xa,se difference between the wave functions entering in I;;i. This leads to
c ;cella,tio \s in the integrand of eq. (3.9b) for large r. The situation is different for the
(7,0' # j)-doupling, In this case the integrand has contributions from larger values of r and
th se contri butions increase with the energy. With a correct treatment of the multipole
expansion of the interaction potential (2.1) the integrals Ijs i, would decrease with E.
Wé expect that the transitions between 00 — j',£ = 1 and j',£ = 1 — 00 dominate the
ex@itation pitrocess, so that the matrix elements between states with j # j' # 0 do not play
aniimporta;nt role. Also, to minimize the consequence of the breaking down the dipole
a.p} roximation in the continuum-continuum coupling at j # j', we use in our calculation
a large parameter K (we take K = 4). This leads to small ;.

In ﬁguiire 6 the solid line represents PBU, the total break-up probability [eq. (4.1)
integrated over energy], as a function of the adimensional parameter + = vt/b, for b =

15| fm. This is obtained by solving the coupled-chanels eqs. (3.5) for a time ¢ and

12



calculating the sum PBU(t) = ¥ jem |@itm|*. The dashed-line corresponds to the neglect
of all transitions, except for the 0 — j£ ones. In the low energy limit, eq. (2.6), this gives
th+ same ro?sult as eq. (2.7). The solid-line includes all possible transitions. The break-up
prq;)babilityﬁ occurs in a time scale of At ~ b/v. Ast — co the break-up probability is 40%
smaller than that calculated by first order perturbation theory.

i
|
|

Ejpq ol ag Texp

[MeV /nucleon] [barns} [barns] [barnsj

790 ; 1.01 0.94 0.89 + 0.1
86.2 | 3.5 2.8 1.37 £ 1.43
69.9 i 3.8 3.1 2.96 + 0.83

Table I. Comparison among the cross sections for the Coulomb break-up of 11 Li incident

on|lead, obtained within the first-order perturbation, oV, and with the coupled-channels

calculation, 0. The last column gives the experimental values of refs. 2 and 7 (first row).
|

|
The total cross section is given by

oBY = or / bdb PBY(c0). (4.2)

The value of bpir is chosen, according to Winther and Alder”, as

nZpZre?

bmin = RP + RT + 4ELab H

(4.3)

where RP(ERT) is the projectile (target) radius. For !'Li we use Rp = 3.14 fm, while
for the target we use Ry = 1.24'% fm. The above formula includes a recoil correction
on the Coulomb excitation cross section, given by the last term which depends on the
bombarding energy®, E.;. Our results are shown in table L. In the first column we give

the cross sections within our non-perturbative approach, while in the second row we give
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the prediction of first-order perturbation. The experimental values for the electromagnetic
di#sociatiop cross section of ! Li-projectiles incident on Pb at several bombarding energies
a.r% shown in the third column®7). It is not clear from the experimental data of ref. 2 which
fraifction of éthese cross sections go into the ? Li + 2n-channel, but due to its binding energy
th} brea.k-qip probability into this channel is dominant and a direct comparison with our
rejults is p‘lossible. We see that, while for high bombarding energies the results of the two
théoreticaliapproaches are practically the same, at low energies their differ by about 20 %.
T ‘is is due to the large break-up probabilities which occur for reactions around some tens
of‘TMeV peii' nucleon®). The coupled-channels calculation result gives a better value of the

cross section at this energy.

5./ Conclusions

| We have developed a non-perturbative coupled-channnels calculation for the break-

up of weakly-bound nuclei. Since we wanted to access the qualitative aspects of a non-
perturbative approach to the break-up, the simple cluster model was used for the purpose.
Wi studied! the particular case of the Coulomb break-up of 1! Li-projectiles. The general
features of .our results should also apply to the break-up of other weakly-bound nuclei.

The continuum was discretized in order to obtain non-divergent matrix elements for the

continuumicontinuum coupling. Qur calculations were not intended to give an accurate
de cription! of the break-up process, but to serve as a suppport for more fundamental
ones, wher% a more realistic treatment of the ground- and final-state of the projectile is
ac omplish!&ad as, e.g., that of ref. 9. Our main conclusions is that a non-perturbative
treatment ¢f the Coulomb break-up of loosely-bound nuclei as, e.g., 1! Li is needed at low
energy collisions (10-100 MeV /nucleon). The non-perturbative cross section gives a total

cross section 20 % lower than the predictions of first-order perturbation theory.

1 .
. We alsp have found that the continuum-continuum coupling can be fairly well treated

by}means of a discretization with help of strongly peaked functions. In order to avoid
spurious ostillations in the discretized wave functions which can lead to slowly convergent
integrals f r the matrix elements, a set of continuous functions was introduced for the

discretization procedure. The final relative motion energy of the fragments is found to
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be very small, of order of their binding energy. Thus, it is expected that the interactions
between the fragments distort their final states appreciably. The continuum-continuum
co#phng mhy therefore be much more relevant than what we obtained with our calculations.

Tﬂe results| presented in this article will certainly help to understand these and other related

questxons in the future.
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Figure Captions

Fig. 1
Fig. 2
Fig. 3

Fig. 4

Fig. 5

Fig. 6

- Coulomb break-up probabilities of 1! L: projectiles incident on lead at 100 MeV /nu-
cleon,t.s a function of the impact parameter 5.

- A se4:t of functions given by the expression (3.2a) of text, before (a) and after (b)
orthogonaiization.

- Ra.dlia.l wave functions for the discretized continuum using the histogram set (a) and
the coihtinuous set (b). We used E; = 200 keV, and £ = 1.

- (a) I:r.adia.l matrix elements, eq. (3.9b), for the transition j — j + 1 (dashed-line),
and for the j — j one (solid line). We used £ = 0 and ¢ = 1. (b) Radial matrix
elemex!lts for the transition j — j', keeping E; = 200 keV and varying E;.

- Couli)mb break-up probability, per unit energy interval (MeV 1), of 1 Li projectiles
incideflt on lead at 100 MeV/nucleon and b = 15 fm, as a function of the final total
kinetid energy of the fragments.

- Coulpmb break-up probabilities of ! Li projectiles incident on lead at 100 MeV per

nucleoP, as a function of r = b/v.
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