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Abstract

These lectures form a brief introduction into the theory of first or-
der matrix optics or linear optics. Important glass optical and particle
optical ements are discussed and used for the design of various smple

ingruments. The phase space picture of dynamics is discussed. The
behaviour Of repdtitive linear systems (The Courant Snyder Theory)

is discussed.
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Figure 1: The Drift

1 Matrix Theory of Glass Optics

In this section we will provide an introduction to matrix optics as applied to
glass optical elements. It will turn out that the matrix formulation provides
a particularly simple and elegant way to describe most of the phenomena, in
geometric optics.

1.1 The Drift

The simplest part of glass optical elements is a region which doesn’t contain
any material, the drift. If we denote by z the position of a ray and by m
its slope, then the final values z, and m, after a drift of length !/ can be
connected very simply to the initial values z; and m;:

Ty = 1’,'1+m1'l ’ (1)
my = my (2)
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Figure 2: The thin lens

This can obviously be written in a matrix form:

Ig _ 1 1 T
()= (o)) ®
For the later discussion it will prove important to note that the matrix

( (1] i ) depends only on the characteristic properties of the element, which

here is the length. On the other hand, the vector :: ) depends only on the
1

parameters of the ray. Altogether, a drift performs a linear transformation
in z,m space. Note that the determinant of the drift matrix is unity.

1.2 The Thin Lens

Besides empty space, glass optical devices contain lenses that change the
direction of the light ray. We are here primarily interested in the thin lens,
which is characterized by the following facts:

1. Positions are not changed, but directions are
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2. Any bundle of parallel light is unified in one point a distance f after
the lens.

3. A ray lighting the center of the lens goes straight through.

The quantity f that describes the lens is called the focal length. Let us
now consider a ray going through the lens; from the picture we read

Lo r (4)
D = f *my (5)
Tit+me-f = D=f.m (6)

From which we infer

T2 = 1y (7
mg = —?+m1 (8)

This relationship can again be written in matrix form:

(=)= (56 g

1
As in the case of the drift, the matrix ( i [1) ) depends only on the
T f

lens, whereas the vector ( :: ) depends on the ray.
1

The simple thin lens we have discussed here represents quite an approxi-
mation for several reasons. First of all, any real lens performs a refraction at
two different surfaces, so positions do change as one goes through the lens.
Furthermore, for most lenses it is not really true that parallel rays all meet
at a point a distance f behind the lens. This is connected to the fact that
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lenses are usually ground with spherical surfaces because anything else is
technically difficult. Furthermore, the glass has dispersion and so different
colors are affected differently. We note however that Snell’s law still allows
to determine the true transfer map of a lens in a rather straightforward way.
It is important to note, however, that this transfer map will no longer be
linear.

1.3 Combinations of Elements

One of the key advantages of the matrix formulation of linear optics is that it
is very simple to compute the matrix describing a system that is composed of
many pieces. Indeed, if M; through M, are the matrices for the subsystems,
then because of the associativity of matrix multiplication, we obtain for the
ray after the last subsystem:

) wl(z))
- 0wy () (1)

So we have shown that the matrix of a combined system equals to product
of matrices of subsystems. Since especially on computers it is very simple to
multiply matrices, this is the method of choice for the basic design of optical
systems.

1.4 Two Drifts

In this section, we want to study what happens if the matrices of two drifts

are multiplied:
1 12 1 ll _ 1 ll +l2
(01)(01)—(0 1 ) (12)
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This equals the matrix of a drift of length I; + & (no surprise).

1.5 Two Lenses

The combination of two lenses is a little more interesting:

1 0 1 0 1 0
(—;—21)(*%1)4—;—,—%1) (13)

So the combination of two lenses provides the same effect as one lens with
focus length f, where 1/f = 1/f, + 1/f,. This is of course a famous law of
optics, the derivation of which is trivial in the matrix concept and somewhat
more involved in the standard geometric method.

2 Systems with Special Properties

In this section we want to apply the matrix techniques to the study of certain
special categories of systems. In particular, we associate certain fundamental
properties of systems with properties of the matrix. We begin with the
imaging systems.

2.1 Imaging (Point-to-Point, - .) Systems

Imaging systems are perhaps the most important systems in optics, and
they deserve some special thought. Suppose we study the action of a slide
projector. At one end of the projector, light is sent through the slide. Sup-
pose the slide shows a tree in the fall with one last green leaf. The image
of this tree is to appear on the screen, and the green leaf is to appear at
one particular location. This requires that all light going through the green

spot on the slide in various directions has to be re-united at one spot on the
screen.
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Figure 3: Point-to-point or imaging system

This means that the final position of a ray is independent of its initial
angle and only depends on the initial position. In terms of transfer matrices

Mz((wlx) (wlm)) (14)

(m|z) (m|m)

this means that the element (z | m) has to vanish. Obviously the element
(z,z) also has an important interpretation: it is the magnification.

2.2 Drift-Lens-Drift (DLD) Systems

Let us sandwich a lens between two drifts:

)0 = (GH( ) o
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Figure 4: Illustration of a DLD system

If such a system is supposed to be imaging, we have to satisfy {; + I, —
lllg/f =0. That 18

1

b=
L L

s

In this case, the magnification is M =1 — L/f=-bL/lL .

(17)

This principle is used in several different devices. In the slide projector, I,
is very small and /; is very large, providing a large magnification. Probably
the most important imaging system is the eye. Here the situation is just the

opposite: I is large and I, is small, allowing for large things to be mapped
on the small retina of the eye.

2.3 Combination of Two Imaging Systems

It is interesting to study the combination of two imaging systems:
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Figure 5: The Slide Projector

Figure 6: Imaging of The Eye

11
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(zle)y 0 S @leh 0 |
( (m|z)s (m|m), ) ( (m|z) (m]|m) ) (18)
(2| 2)a(z | 2); 0
B ( (m | 2)afz | )1 + (m | m)a(m [ 2)y (m | m)a(m | m)y ) (19)

As is to be expected, the total system is again imaging, and the magnifi-
cation is just the product of the individual magnifications.

Mtotal = Ml ) M2 (20)

2.4 Parallel-to-Point (|| -) Systems

As we saw above, the human eye observing a nearby object is one of the
prime examples of an imaging system. But what happens if the eye looks
at things farther and farther away, in particular at the stars, a pastime of
the human race and scientists for eternity? The length of the first drift I
becomes larger and larger, and for all practical purposes the light coming
from one star reaches the eye as a parallel bundle. So what the eye is to
interpret now is the angle under which the light comes in, and hence the
position on the retina should depend only on the initial angle, but not on
the initial position at which the light strikes the eye.

This requires that (z|z) = 0. If we look at the eye as a DLD system, this
requires 1 —L/f =0 [, = f, [ arbitrary. Thus the retina has to be exactly
at the focal length; almost as important is that the distance to the object is
arbitrary since we cannot change our distance to the stars significantly.

2.5 Point-to-Parallel (- ||) Systems

Another important class of systems is the point to parallel systems. In point
to parallel systems, the final slope does depend only on the initial position,
but not on the initial slope. So we have (mlm) = 0.
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Figure 7: Parallel-to-point system

i/

Figure 8: A Point-to-parallel system

13
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Figure 9: Parallel-to-parallel system

From the transfer matrices, it follows rather directly that the combination
of a point to parallel and a parallel to point system forms a point to point
system. Using the relaxed eye as the parallel to point system, we can thus
build a microscope by putting a suitable point to parallel system in front of
the eye. It is interesting to see how the lengths in a point to parallel system
have to be chosen; we obtain (m|m) = 0 & 1 — Wif=0s1 = f L
arbitrary. The first part is as expected; the latter part is helpful because it
allows the eye to move with respect to the microscope.

2.6 Parallel-to-Parallel (|| ||) Systems

The final important system is the parallel to parallel system. By putting it
between the eye and the stars, a magnification of angles can be achieved.
This is the principle of the telescope.

The system has to be such that the final slope depends on the initial slope,
but not on the initial , which requires (m|z) = 0. If we try to achieve this
with a DLD system, then we have to satisfy —1/f = 0, which is impossible.
This entails that a telescope has to contain at least two lenses.



3 ELECTROMAGNETIC ELEMENTS WITH STRAIGHT AXIS 15

3 Electromagnetic Elements with Straight
Axis

In the previous sections, we have concentrated on glass optical systems where
light rays are affected by refractive surfaces. Our main goal are particle
optical systems, where the trajectories of charged particles are affected by
suitable electromagnetic fields. As a first step in this direction, let us first
review the equations of motion in electromagnetic fields.

3.1 The Equations of Motion in Electromagnetic Fields
For arbitrary electromagnetic fields, the equations of motion of a charged

particle are

= 7 (21)
= e(ﬁ-f-'&'xg) | (22)

ey

Since these equations contain both the momentum and the velocity, they are
not very convenient for relativistic particles. In this case we have

7 = mi= =0 (23)
-2
— =4 —%
- P P
v mo( t m%cz) (24)

So we can eliminate the velocity from the equations:

1
. 7 2T 2
P o= —p—(1+ L ) (25)
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. —+ 7} 2 —;_ —+
7 = e(E+£——(1+—‘?—2) xB) (26)

0 LU

This is of crucial importance for the motion in accelerating cavities. However,
for focusing elements the effect is very minor; in magnetic systems, there are
no changes in velocities, and since electric fields mainly act perpendicular to
the particle trajectory, the effect is not very important there either. So we

make the assumption that the mass changes adiabaticlly if at all, which leads
to

c

r=—(E+7x B) @)

m

In the following, we are interested in what happens to a beam that moves
in z direction. This means that the main velocit components of the beam
is in z-direction, and because of v, = , /v? — vZ — vZ, to first order we have
v, = v = const if there are no accelerating fields. It turns out that this
approximation is enough to obtain the first order part of the transfer map.
In this case the equations can be transformed to z as the independent variable,

and dots (derivatives with respect to t) can be replaced by primes (derivatives
with respect to z). Using

N

oo L LT
C da? 2 (28)
"= (=), (29)

v, U,
we obtain the equations of the particle trajectory
" € !
= E, B,-B 30
T mvg + mo, (y y) ( )
e e

y” = %Tg y + . (B.’L' - .’E,Bz) (31)
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Figure 10: Equipotential lines of electric quadrupole

In the following sections, we will study the various types of motion for
several important cases.

3.2 Electric Case, F, =0

We begin with elements in which there are no fields in z direction. Since we
are interested in cases in which the motion is linear, we have to have linear
fields, and we assume E, = —Pz. Since V. E = ¢ (there are no charges
inside the field generating element), we can infer £, = Py, The potential to
this field is given by V = 1P(z? — y?).

To produce this field, we can carve metal electrode along one set of equipo-
tential lines, producing a set of boundary conditions in which to solve the
Laplace equation. Since to a given boundary condition, there is a unique
solution, we automatically obtain the right one. Because of the four fold
symmetry, the resulting device is called the “Electrostatic Quadrupole”.

Plugging in the fields into the equations of motion, we obtain linear equa-
tions which have the following solutions:
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!

z = zocos KL + %9 sin KL (33)
¥ = —KaosinKL +zlcosKL (34)
v = yocosh KL+ %6 sinh KL (35)
¥y = —Kyosinh KL+ y)coshKL (36)

(37)

where we have used the quantities

K? = (e/mv?)P
Xe = mvile

where ¥, is called the “electric rigidity”.

zy cos K[, % sin KL 0 0 r
gy | _ | ~KsinKL cosKL 0 0 )
ya | 0 0 cosh KL  %sinhKL 0
Vs 0 0 —KsinhKL coshKL Y
| (38)

So differing from the simple glass lens, here the z and y directions are
treated quite differently; Focusing in one direction comes at the expense of de-
focussing in the other. Note however that by choosing P of the other sign, K
becomes imaginary and the trig functions and hyperbolic functions exchange
their roles. This is important because it allows to combine quadrupoles with
different P to make a simultaneous image in x and y directions.

3.3 Electric Case, E, # 0

It turns out that by giving up the condition E, = 0, we can obtain a field that
treats the x and y directions equal. Let us assume that we want E, = -Pz,
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Figure 11: Electric round lens

E, = —Py, then from VE = {§ we infer %Ez = 2P. So there must be a
field in z direction, which is indeed larger as the fields in z and y directions.
Since only the latter ones are suitable for focusing, the bulk of the field is
wasted. Furthermore, the element cannot be made very long because of the
need for an ever increasing z field, and so their use is limited to low energy
beams. Since rotational symmetry can be maintained, these elements are
called round lenses.

3.4 Magnetic Case, B, =0

To obtain linear motion in the magnetic cases, from the equations of motion
one can infer By, = Px. Since V x B = 0, we get B, = Py, and there is a
scalar potential which has the form V = —Pzy.

The procedure to produce this field is similar as in the last section: carve
iron following equipotential lines, An important difference is that while in
the electric case, the electrode surface was always a perfect equipotential
surface, in the magnetic case this is no longer the case because of the not
infinite permeability of the iron.
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Figure 12: Magnetic quadrupole

Altogether, the solutions of the resulting linear equations of motion can
be written in the following way:

9 cos KL  4sinKL 0 0 T

o | —KsinKL cosKI 0 0 2]

Yo 1 0 0 cosh KL  &sinhKL Y1

Y3 0 0 —Ksinh KL cosh KL ¥
(39)

where K? = Pe/mv, mv/e = x,,, and y,, is called magnetic rigidity.

Note again that by choosing P of a different sign, the trig and hyperbolic
solutions switch.

3.5 Magnetic Case , B, # 0

If we demand a rotationally symmetrical arrangement of the fields, we have
to satisfy B, = Pz, B, = Py, which can be achieved in a similar way as in
the electric case by setting %Bz = —2P. Note that per se, the rotationally
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Figure 13: Magnetic round lens

symmetric field does not provide any focusing, but rather a coupling of the
x and y motions of the equations of motion. The bulk result is a rotation in
the x-y plane; as a side effect, the azimuthal velocities, combined with the
radial field, generate radial focusing.

So similar to the electric case, the bulk of the field is wasted, and the
resulting focusing is rather weak. Since again the elements can only be
rather short, they are only suitable for low energy particles. They are used
in electron microscopes and TVs. Similar to the case of the electrostatic
round lenses, in reality the fields are quite nonlinear, leading to substantial
nonlinearities in the true transfer map.

4 Bending Elements

4.1 The Magnetic Dipole

The most important bending element is the dipole which in the inside has
Just a constant magnetic field. So the particles move in circles:
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Figure 14: Sketch of a magnetic dipole
muv?
= evB (40)
From which we have v

where [x,,] = 1Tm.

Because there are just circles, the transfer map of the dipole can be
computed analytically with just a little geometry. Consider particle with
i, 8YisYis Op = (Xm — Xmo)/Xmo. Compared with the reference particle,
r = R(1+6,), and the center of the circle lies at P = (r sin a;,z;+ R—r cos o;).
Where P. On the exit line, we have

ue = (R+zy)sing (42)
ve = (R+z4)cos¢ (43)

So we have to solve
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[(R+z;)sing ~rsine]’ + [(R+z7)cos ¢ — (2, + R—reosa))]? = r? (44)

and keep only terms linear in a;, o = z;, 6,. After some arithmetic, this
leads to

Ty = zicosP+x;- Rsing+ &R(1 — cos @) (45)
ty = %%m;(gﬁ) = —%m,- sin ¢ + z; cos ¢ + 8o sin ¢ (46)

Again, the simple linear relation represents quite an approximation. Firstly,
there are obviously higher order terms which appear with an exact solution
of the geometry. Furthermore, the entrance and exit regions of the dipole do
have nonuniform fields, which lead to non-circular motion.

Noting that the motion in y direction is just a drift, we obtain for the
total transfer matrix

Ty cos¢ Rsing 0 0 R(1—cosg) x;
) ~%sing cosé 0 0 sin ¢ z!
y | =] o 0 1 R§¢ 0 w | (1)
Yy 0 0 0 1 0 Y
8 0 0 0 0 ] 8

4.2 Edge Focusing

Frequently the entrance into a dipole magnet is not perpendicular, but
deliberately at a certain angle. For a positive angle, the net effect in x direc-
tion is focusing; particles above the reference particle enter the field earlier
and are thus bent down, and the opposite happens to particles below the
reference particle. This can be approximated by a thin lens action. Interest-
ingly, there is also an effect in the y direction: Since the fringe field is now
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Figure 15: The Effect of Edge Focusing

entered at an angle, there is a net defocussing. Altogether, the effects are
approximately:

Iy = I (48)
3:'2 = 3:’1 il 0 I ta:E (49)
Y2 = 1 (50)
tan e
Yo = Y+ (51)
(52)
So the transfer matrix is
1 0 0 09
-—"f‘:‘s 1 0 00
M= 0 0 1 00 (53)
0 0 "a:“’ 1 0
0 0 0 01



4 BENDING ELEMENTS 25

e

Figure 16: Magnetic dipole with inhomogeneous field
4.3 The Inhomogeneous Magnet

In many cases, it is advantageous to deviate from the concept of a linear
homogeneous magnet. Often there is a deliberate nonlinearity of the form
x

B = BQ(] - nlﬁ) (54)

We have to postpone a quantitative discussion of this effect; qualitatively,
trajectories with positive z go “more straight” if n; > 0, and trajectories with
negative & are bent more if n; > 0. Trajectories are focused in y-direction.
The transfer matrix is

cos /T—n¢ (R/vT—="n1)sin /T —ni¢
~(v/1 —ni/R)sin+/T —né cos/1 —m ¢
0 0
0 0
0 0
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Figure 17: Sketch of a momentum spectrograph

0 - 0 R(1 — cos /T ~ n;14)/ /T =y
0 0 siny/1 —nyé
cos \/ny¢ (R/\/n1)sin \/ni¢ 0
~(y/n1/R)sin \/n1¢ cos \/n1 ¢ 0
0 0

1

An interesting consequence is that an inhomogeneous magnet treats x
and y identically for n, = 1.

4.4 The Momentum Spectrograph

Using a bending magnets, it is possible to build a devices that sorts
momenta by combining fields suitably to let the final position only depend
on the momentum, and not the initial velocity. These are called momentum
spectrographs. We thus require

(zlz") =0, (z|6,) large. (55)

Determinant unity implies that (z|x) 5 0,but it should not be too large.
The initial width D; has to be made as small as possible. The final width is
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Figure 18: Isotope separator

|(z|z) Di], and thus to separate §,; and 6,;, we must have (z|6)(6p1 = 6p2)| >
|(z]z) D).

We define the resolution of the device as r = xpn/Axm = 1/A$ =
[(z]6)/ (=) D]

A momentum spectrograph can also be used as a mass spectrograph if
the incoming energy is constant. An example for a simple isotope separator
is a 180 degree bending magnet (see picture).

4.5 Electrostatic Deflector

Besides magnetic deflectors, sometimes also some electrostatic equivalents
are used.

To force a particle on a circle, we have mv?/R = ¢E = E = Xe/ R,
Xe = mv?/e “electric rigidity”. The unit is [x.] = 1V. The quantitative
derivation of the transfer matrix has to be postponed until later. The result
18



4 BENDING ELEMENTS 28

Figure 19: Sketch of an Electrostatic Deflector

cos /1T — nio (R//1 =n;)sin /1 — nié
~(v/1 = n;/R)sin\/T —n ¢ cos /1 —n,¢

0 0
0 0
0 0

0 0 R(1 — cos /T — ny4)//T — 4
0 0 siny/1 —n, ¢
cos \/n1¢ (R/\/n1)sin \/ni¢ 0
—(y/n1/R)sin \/rn; ¢ cos /1 ¢ 0
0 0 1

where again n; describes the inhomogeneity of the electric field. We note
that a Condenser with spherical sheets has potential 1/r and can be done
analytically similar to the homogeneous bending magnet. (Kepler problem).
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Figure 20: Mapping of Phase Space Points
5 Motion in Phase Space

After having discussed important particle optical elements and some devices,
we consider the effect of these elements on z,2’ space, the so-called phase
space. We point out several important aspects of the motion.

¢ In our approximation, the action of elements is a linear matrix with
unity determinant.

* Since the matrix is nonsingular, different initial points have different
final points.

Because of linearity, straight lines stay straight lines.

Because of linearity, continuous curves stay continuous curves.

Because of unity determinant, areas are preserved.

5.1 Emittance
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Figure 21: Mapping of the emittance

Since the areas of phase space are preserved under the action of an ele-
ment, it makes sense to introduce a name for this area; we call it emittance.
We note that the emittance is a property of the incoming beam, and is in-
variant as it goes through the system. Usually a system can only accept a
certain maximum emittance without having particles hit certain boundaries,
and this maximum emittance is called the acceptance.

We note the concept of the preservation of emittance does also hold in the
nonlinear case; there it is connected to Liouville’s theorem and the Hamilto-
nian type of the motion.

A nice consequence of the above said is that in order to study the motion,
it suffices to study a closed curve containing all particles, because particles
cannot penetrate this surface as they go through the system.

5.2 The Phase Space Action of Drifts and Lenses

From the transfer matrices, it becomes apparent that the effect of a drift
is a shearing parallel to the z-axis, and the action of a lens is a shearing
parallel to the z'-axis.
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Figure 22: Motion of phase space points through drift(left) or lens(right)

5.3 Parallelogram-Like Phase Space

An important example for phase spaces is the parallelogram-shaped phase
space. In this case, the occupied space is included in a rectangle. Since
straight lines stay straight lines and particles do not penctrate, after the
action of a transfer matrix is still contained in a quadrangle, and for it suffices
to study what happens to the corners alone. In particular, the width of the
total beam can be computed by just looking at the maxima of the positions
of the four corner points.

5.4 Elliptic Phase Space

Another important case is the elliptic phase space. Let us assume that our
phase space is circular at the beginning:

(wl,x;)({l] ?)(2):5 (56)

After a transformation (wg,2%) = M(21,2}) = (z1,2)) = M~(z3,24)
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Figure 23: Change of a parallelogram-like phase area though mapping
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Figure 24: Circular phase area
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Figure 25: Elliptic phase area

Inserting this into the above equation, we obtain

= (22, ) (MM (2, 2)) = ¢ (57)

The matrix (M~"M~1) is symmetric, so let (M~1M-1) = ( Z g )a

and obtain

@) (18 @a=c

This is an ellipse. Because |M~1"M~1| = 1, we infer 87— a? = 1, and we
get

oy + ee’a + B =¢ (59)

from which we find out that the axis intersections are To = \/%, g = \/%
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To determine the maxima in z and 2’ directions is a little more difficult.
Let f(x,2') = 2%y + 2z2’'c + 225, then we have

= Vf= (227 + 2¢'a, 2z + 22'B) (60)
Where we have maximum z, we have (Vf), = 0. So za = —2'8 =
T = —% Plug 2’ back to the original equation

Ty

B
2By - 2% = ¢ (62)

tm = \[Be (63)

ﬁv+2mﬂ—%ﬁ+ﬂ( P o= e (61)

In a similar way, we obtain a,, = \/7¢

5.5 The Transformation of the Ellipse

If the initial emittance is an ellipse like below

(21, 27) ( le Cﬂ:l ) ( 2 ) =¢ (64)

what happens after another transformation? We obtain

e |0y (2o ) ()= o)

And the relations between the initial and final parameters are

ﬂ? (m:m)z "2(:5,‘7:)(3:,3:') ("Bs '7"')2
a | =| —(z,z)(=',z} (z,z)(z,2')+ (=, oM a',z) —(z,2') (2, z")
Y2 (2, z) —2(', z)(2’, z') (z',2)?
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Figure 26: Behavior of 8 through drift L

As an example, let us consider the transform through a drift ( {1) {J )
‘We obtain

B = fo—2Lag + Ly (67)

The minimum of 3 occurs at L = 5> and this point is called waist. It is
worth pointing out that the location of the waist is does not have to coincide
with the location of an image.

6 Repetitive Systems

In many cases it is very important to see what happens when systems are it-
erated. This case happens in storage rings and circular accelerators. Suppose
the transfer matrix for one turn is

M — ( (z,2) (z,2') )

(z',2) ()
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It turns out that the repetitive behaviour of the system is easiest studied
by switching to new variables, the so-called normal form variables. These
variables are connected to the eigenvectors of the matrix. We begin by finding
the eigenvalues of M through the equation: [M —AE| = 0, i.e. (z, z)(z',z') -
Mz, z) + (2, 2')] + A? - (z,2")(2',z) = 0. So the eigenvalues are

/\12 =

—{(z,z) + («',2")) £ \2/[($’$) + (@) -~ 4 (68)

I
I
H_
[

(69)

It is important that the eigenvalues are either real or form a conjugate

pair. Furthermore, if trM # 2, the two eigenvalues form a reciprocal pair,
i.e, /\1 . /\2 = 1.

6.1 The Unstable Case |trM| > 2

Here A;,A; are real and distinct. Since they form a reciprocal pair, one of
the A is greater than unity. Considering motion in eigenvector coordinates
Vi, Vo (suppose |Ay] > 1,|A_| < 1),we have

Z = aV,+bV. (70)
MZ = \aV, + MbV. (71)

Define a = /\10,, B = /\zb
ab = ab (72)

This mean that the phase space point moves along hyperbola. Thus the
particles moves further and further out, and the same happens in the original
coordinates. So the motion unstable and hence of little interest to us.
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Flgure 27: Trajectories of a phase space point in the eigenvector coordinates
in case of |trM| > 2

6.2 The Stable Case |trM| < 2

In this case A; and A; are complex conjugates, Ay = ;. And because Ay =
I/Al Jwe get Al 2 = 6*”"

The quantity u is a very important characteristic of the accelerator, it is
called the tune. The eigenvectors satisfy the same relation as the elgenvalues
Vi = V;. In the coordinates with unit vectors Vi = Re(V}), V. = = Im(V}),
we have

F = aV +bV. (73)
Mz = ( COSH - smp )f (74)
—S8Inj cosy

which means # moves in circles, which means the motion is stable under
iteration. The angular advance in the normal coordinates is constant for
each iterations and equals the angle y, i.e. the tune.
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Figure 28: Trajectories in case of |trM| < 2

Note that in the original coordinates, the angular advance does not have
to be constant from turn to turn; but one quickly sees that the average
angular advance over many turns equals u. For this purpose we observe
that the angle advance in the original coordinates can be described by the
angle advance due to the transformation to normal form coordinates plus
the angle advance in normal form coordinates plus the angle advance of
the reverse transformation. Since for many iterations, the transformation
advances contribute only an insignificant amount, the average approaches
the angle in the normal form coordinates.

It is very important in practice that even if the accelerator is perturbed a
bit, i.e. the matrix elements change a little, the trace will still stay below two
and so the qualitative behaviour does not change. In original coordinates the
motion lies on an ellipse.

6.3 The Degenerate Case [trM|=2

This case is degenerate and should be avoided. Since a small perturbation
can change the trace to larger than 2, this case is potentially unstable under
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perturbation.

6.4 The Invariant Ellipse in the Stable Case

From above, we know ), ; = e**; Here we choose sign(y) =sign((z, z'})).

Define

@i = 2sin p (75)
o (z,2')

bi = sin p (76)
S (', )

Yo = = sin f ) (77)

we note f;,; > 0; furthermore From the definitions, we rewrite the transfer
matrix in terms of a;,8;,% and u:

M = [ cosutaising Bisin (78)
- ~~; sin g cos g — q;sin
= [-cosp+ Ksinpy (79)
=> M1 = I.cosp— Ksinp (80)

Where [ is the unit matrix, K = ( @ f )
- T

It now turns out that the coefficients o, 8; and +; introduced above and
determined by the map are the coefficients of an ellipse that stays invariant
under the motion, which according to above means

-1t Vi o -1 _ | %
M (0-'1' ﬂi)M —(O—’i ﬂi) (81)
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To prove this important relationship, we set J = ( 0 1 ), T =

Vi o
( o B ) Then

_ (v oo a B ) _
e (23)(5 )
K'T = K'Tt=J'=_J (83)
= M UTM™ = (Jcosp — K'sin wT(Jcosp— Ksing)  (84)
=T (85)
This relation means that if the emittance at the beginning is
Td¥=c¢ (86)

The invariant ellipse of a stable repetitive system is an important char-
acteristic of the system with an importance similar to the tune.

6.5 Matching and Beating

In order to utilize the acceptance of an accelerator most efficiently, it is
important to match the ellipse delivered to the accelerator with the invariant
ellipse of the accelerator. In this case, under each iteration, the occupied
area in phase space falls together. If this is not the case, each time around
another area will be occupied, and a much a larger acceptance is required.
This effect is called beating.

6.6 A Glimpse at Nonlinear Effects

The previous sections fully solved the question of stability in an accelerator
that is described by a linear transfer map. Unfortunately, all transfer maps
are nonlinear, and nonlinear effects can make the situation much more com-
plicated and often even impossible to fully solve. We have to refer to a future
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course to a more thorough discussion of these effects; here we want to limit
ourselves to one observation.

If we go around a ring repeatedly, it is not desirable to have the particles
come to the same locations in phase space after a small number of turns,
because then they are particularly sensitive to the field nonlinearities at these
particular points. So this requires to satisfy

n- pe + mpy, = 2wl (87)

which is the famous tune resonance condition. In practice, the higher the n
and m are allowed to become, the harder it will be to stay away from the
corresponding resonances since the resonance lines lie dense in tune space.



