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HAPPY BIRTHDAY ABE!

Large Amplitude Collective Motion (LACM) theory is one subject to which Abe
Klein has devoted a significant amount of his time. His recent Annals of Physics
article with Niels R. Walet and Giu Do Dang, 208, 90 (1991) is a partial review
of his and his collaborators' efforts towards solving one of the central and most
difficult problems of LACM, the definition of the collective submanifold. | have
been fortunate to work with him on this subject and to become one of his numerous
friends. | hope that Abe will enjoy the subject | have chosen.

| shall argue here that band crossings play a crucial and far more subtle role
in LACM than has been appreciated. The ultimate theory of LACM will have to
include the dynamical effects arising from their presence. The fact that adiabaticity
is violated near a level crossing is atextbook issue. In their classical paper (1], Hill
and Wheeler gave arather detailed analysis of the role of Landau-Zener transitions
and advocated the use of a multisurfacepoteritial energy in the treatment of LACM.
Similar problems arise as well in chemistry and condensed matter physics [2] and the
presence of level crossings is linked with the onset of dissipation. In Ref. {3} | have
suggested a similar picture, but also added a new element, dynamically generated
gauge fields. Relatively recently it became evident that there is a rather unusual
correction to the adiabatic theorem, the way everyone knows it from textbooks, the
so-called Berry’s phase. Berry and Mead (4] pointed out that gauge fields have to be
added to the Born-Oppenheimer picture, whenever alevel crossing is present, and
that they might lead to some rather remarkable phenomena. Mead [4] coined the



term “Molecular Aharonov-Bohm effect” to designate this new class of phenomena.
At the present, the prevailing attitude is that if a collective Hamiltonian can be
derived it contains a kinetic energy term and a potential energy term. The Berry’s
phase phenomenon or the Molecular Aharonov-Bohm effect demands however, that
one should introduce as well effective gauge potentials, which depending on the
degree of sophistication of the theoretical approach could be either abelian or non-
abelian [5]. It takes almost an insignificant change in the value of a collective variable
to generate a band crossing [6].

I shall discuss now what happens at one isolated band crossing and to this end
[ shall introduce an idealized model, which, in spite of its simplicity, it embodies
the essential physics of the phenomena taking place at or near a level crossing [7].
Let us assume that there are three slow degrees of freedom Q, P, whose motion is

governed by the Hamiltonian

P2
Ho = 53+ V(Q), 1)

with a large mass and a relatively shallow potential. In particular, one can associate
one variable with the quadrupole deformation and the other two with the real and
imaginary parts of the pairing field. Most of the time I shall treat the slow vari-
ables as classical, however this approximation can be easily improved either at the
semiclassical level or even quantum if necessary. Since | want to limit this analysis
to an isolated band crossing only, e.g. the ground and an excited state bands, the
fast degrees of freedom will be treated in a reduced two-dimensional Hilbert space

by the Hamiltonian )
h=35Q-0, | @)

where x is a coupling constant and & are the usual Pauli matrices.
Now let us compare this with the Born-Oppenheimer approximation for a simple
situation, when the slow degrees of freedom evolve as Q(2) = Qq(sin(wt), 0, cos(wt)).
Formally, the quantum problem is identical to the motion of a spin 1/2 in a uniformly

rotating magnetic field in the zz-plane. I shall represent the quantum state by the

1{ 1+2z z-1
P=3 . y ’ (3)
2l z+iy 1=z

density matrix p



where r = (z,y,2) = Tr(pe) are real, with r? = z? + y? + 2? < 1 (equality for the
case of a pure state only, p? = p). Assuming that initially z = 1 and constructing

the solution of the time-dependent equation ig = [k, p] one readily obtains that

z(t) = sin(wt) + {_.“’_2 sin(wt) — = [sin(Q + w)t + sin(Q - u)t} }  4a)

2 207 Q+w N—-w
y(t) = gleos(Q) — 1], (4b)
2 w -w
z(t) = cos(wt) + {—%5 cos(wt) — 2:_;2 [coi(]ﬂ-:u t_ cos{(}ﬂ— ” )t] } , (4¢)

if kQo = 1 (this amounts only to a redefinition of the time scale) and where Q2 =
1 +w?. The strictly adiabatic approximation is (z(t), y(t), z(t)) = (sinwt, 0, coswt).
One can characterize the motion of r as precession (with frequency w) plus nutation
(with frequency §2). One would expect that the ATDHF theory (8] shall apply
if w € 1. ATDHF theory requires terms of up to order w? to be retained and
it assumes that they are slowly varying functions of time. In Refs. [8] it was
shown that one can define collective coordinates and momenta by introducing the
following representation of the density matrix p = exp(ix)}poexp(—ix), where both
po (generalized coordinate) and x (generalized momentum) are hermitian and time-
even. In the present case (r = 1, ro = V2 + 29)

1 [ ro+z = arcsin -z z
Po = o— ) x = 2oinly) ) (5)

21'0 z T

Even though the collective velocity is small when w < 1, its frequency is of order
(the collective velocity is proportional to y(f)). Similarly, the collective coordinate
po has high frequency components beyond the 0-th order in w. Also, as one can see
from Egs. (4), a straightforward expansion in w is meaningless (one can not simply
retain terms of up to order w?, as ATDHF theory implies), since the slow and fast
modes are intertwined in a nontrivial way. In studying the collective motion, one is
interested in situations where wt ~ 1, which enters in a rather complicated way into
the arguments of the trigonometric functions. The above simple formulas warn us
that near a band crossing the dynamics might be more complicated than a simple

minded adiabatic approximation might suggest.



If one treats the slow variables as classical, the equations of motion for this
system can be derived from the following Lagrangian [7,9]
: z(zy — yi) p? 1 '
L=P. ———— e | — + V -kQ-r|.
e am TV @+5eQer. (6)
The second term is the gauge field of a Dirac monopole {4], which, when integrated
over a closed loop, is the exact quantum nonintegrable phase, which modifies the

Bohr-Sommerfeld quantization rule. The equations of motion are

Q=—-A1:;I-, P=—Q-,‘g—(c%—%nr, F=xQ xr. (7a,b,c)
In this form they can be thought of as fully quantum, if Eqs.(7a,b) are interpreted as
Heisenberg equations of motion for the corresponding operators (Eq. (7c) is already
the Schrodinger equation ip = [A, p] in a disguised form). One can safely say that
the above equations describe the correct time behaviour of an arbitrary quantum
system near a level crossing. It is easy to establish the existence of the following

integrals of motion

P? - 1
ro= /22 +y?+ 22, =m+V(Q)+EQ2 r, J=QxP+§r. (8 —10)

In the case of a pure state for the fast variables r = 1 and the first integral of

motion simply expresses the conservation of the norm of the wave function. The
second integral of motion is the total energy of the system. The last integral of
motion has a most unusual structure. It looks like the angular momentum for the
slow degrees of freedom, except for the last term. If the slow motion is quantized J
is half-integer. (If the fast modes are in a mixed state, then r < 1 and consequently
J becomes fractional/real.) This fractionalization of the quantum numbers is well-
known in molecular spectra [10,11]. |

A standard Born-Oppenheimer approach to this model corresponds to assuming
Q. r=x, (r=1),ie the “spin” is enslaved by the “magnetic field". The

equations of motion for the slow variables then read

y_ P o5 _9Vu(Q) _ _(9V(Q)  <Q .
Q= P=""5q - (3Q *20)’ (Ha,3)

where V3 (Q) = V(Q) £ xQ/2 represent the two adiabatic potential surfaces, the
lower one being a “Mexican hat”. At this level the adiabatic approximation has

several deficiencies:



¢ Instead of J only L = Q x P is conserved. As a result the “classical collective

trajectory” is confined to a plane.

o Even though in the exact treatment the force is everywhere defined and non-
singular, in the Born-Oppenheimer approximation the force is singular at the

origin.

¢ The Bohr-Sommerfeld quantization rule (A = 1) § P - dQ = 2(n + ap)r does
not include the correction coming from the Berry’s phase. ays is the correction

coming from turning points or the Maslov index.

One can try to improve upon this simple Born-Oppenheimer approximation by
taking into account the induced Berry’s gauge potential into the Lagrangian. This

amounts to replacing the Lagrangian in Eq. (6) by

Qs(@1Q2 — Q:G1) _
AQT+ QDY+ Q3+ Q)

which follows from assuming Q - r = £@Q, (r = 1). The ensuing equations of

Lgo=P - Qzx

P? 26Q
mtv@=%E

motion are then

Q= P=-(miﬁiu). (134, 5)

0Q 2Q T 2M@Q3

The main difference with Eqs. (11a,b) is in the presence of the induced “magnetic

P
M’

force”, arising from the “Dirac monopole” at the origin. Now P and Q are not
canonical variables anymore. One can easily check that in this improved adiabatic

approximation:

o The conserved total angular momentum is

JBO=Q><P:1:3- (14)

2Q’
which is much closer to the truth. Due to this the classical collective trajectory

is not confined to a plane anymore, similarly to the exact solution.

o The scalar potential force is identical to the one in standard Born-Oppenheimer

approximation, but the “induced magnetic force” is even more singular at the



origin. However, since in the adiabatic approximation £ — o0 and Q — 0, the
role of the “magnetic force” is rather small, except in the immediate vicinity
of the origin. The strength of this induced “magnetic force” is independent of
x and its role is merely to ensure the conservation of the “correct total angu-
lar momentum”. The fact that the strength of this induced “magnetic force”
is independent of the coupling strength between the slow and fast degrees of
freedom is obviously not a very pleasant feature. Its strength should sornehow
vanish when ¥ — 0 and increase in the opposite limit. This fact alone should
shed strong doubts on the limits of validity of this improved adiabatic approx-
irnation, which has been widely discussed in the literature lately, in connection
with the Berry’s phase phenomenon or the Molecular Aharonov-Bohm effect.
This form of the effective magnetic field follows simply from the kinematical

coustraint imposed on the “spin” variables.

¢ The Bohr-Oppenheimer quantization rule now reads

f [P dQ £ Qa(Q1dQ:z — Q2dQ1)
Q1+ QHVQ? + Q3+ Q3

and it includes the contribution from the Berry’s phase as it should. How-

=2An+ar)r,  (15)

ever, the range of validity of this formula is very likely limited (see above the

comment).

Ont; should expect this improved Born-Oppenheimer approximation to be valid
only for extremely low potential energies, where the “spin” is almost perfectly an-
tialigned w_ith the “magnetic field” and the total energy is almost identical to V_(Q).
This is a rather strong limitation for the purposes of LACM. Even though the po-
tential V{Q) might be rather shallow, the amplitude of the motion is large and the
potential energy V(Q) can undergo rather large variations. There is no reason to
expect that along the collective trajectory the kinetic energy is always small. This
amounts to the fact that the “spin” cannot remain antialigned with the “magnetic
field” and strong deviations from the (improved) adiabatic approximation will occur.

The nonlinear coupling between the fast and slow degrees of freedom leads to

chaotic trajectories [11,12]. I lack the space here to go into more details, but [ want



to draw attention to a rather simple consequence of the chaotic behaviour. Since the
slow and fast degrees of freedom seem to influence each other in a nontrivial way, one
cannot expect that the Landau-Zener formula for the transition probability from
one level to another to be applicable. The Landau-Zener probability is a monotonic
function of the slow velocity and diabatic behaviour sets in rather quickly. In the
presence of a strong chaotic source, the behaviour of the transition probability, or
the population of the two levels ( p;; and pg;), will be extremely irregular functions
of the asymptotic values of the energy (far from the band crossing). This should
lead to a rather unusual character of the dissipation in LACM.

In Fig. | one has an example of a multisurface potential energy of a “realis-
tic” nucleus (many-fermionic system), which undergoes large amplitude collective
motion, not merely small amplitude vibrations around a local minimum. In partic-
ular, the potential energy of a fissioning nucleus will have a similar appearance. In
a simplified picture, one can imagine that at each band crossing there is a “Dirac
magnetic monopole”. The “effective magnetic field” generated by each “monopole”
is felt in the immediate neighborhood of each funnel or diabolic point mainly.

Let us assume that the motion starts with almost vanishing collective velocity
near the top of the barrier towards the ground state configuration. Once it reaches
the first band crossing, depending on the particular values of the collective coordi-
nates and momenta and the population of the two adjacent bands, after passing past
the funnel {1] or diabolical point {4], the system can end up in any state. In the ab-
sence of a “magnetic force” the system will most likely follow the valley of the lower
potential energy surface. The “magnetic force” will however curve the trajectory
(or even capture the system for a while) and at the same time the “spin” (which
is related with the relative population of the two adjacent bands) can turn around.
Near the funnel or diabolical point, the collective and intrinsic degrees of freedom
are strongly coupled and the motion is essentially chaotic. One cannot expect either
the adiabatic or the diabatic picture to be a truthful representation of the reality.
An essential element is of course the fact that the collective motion is really multi-
dimensional, one cannot limit the analysis to only one degree of freedom, since the

“magnetic field” will propel the system into additional directions. The final picture
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Figure 1:  This figure has been adapted from W.Swiatecki, Nucl. Phys.
A 488, 375 (1988). It represents the potential energy of a many-fermion
system (“nucleus”) as a function of one collective variable (e.g. 3). One
can distinguish several intersecting parabolas, corresponding to differ-
ent occupation numbers. Due to residual interactions (pairing, axial or
octupole deformation, etc) instead of real crossings there are avoided
band crossings. However, these avoided band crossings will become real
band crossings when one will move into the direction of another collec-
tive variables at some point. One has to view this figure as a section of
a multisurface potential energy for fixed collective variables, except one.

—



will be even more complicated by the fact that one has to consider actually the
propagation of a packet of initial conditions, if the motion is really chaotic. In such
a case quantum interference effects in the slow variables will also become important. -
The system can start near one band crossing and reach another one, after passing

near several intermediate ones through a variety of paths. Then the interference
among different trajectories should be included and (due to the essentially random

distribution of funnels or diabolical points) very likely is destructive in character

[2¢]. The trajectory will also have a quite complicated pattern, since near every

funnel or diabolical point, it will be bend or even forced to make a few turns. As

a result the actual length of the trajectory can become very large and the time re-

quired to get away from the initial coordinates rather long. On a coarse scale it can

appear as a random walk, in spite of the fact that very little dissipation is actually

present. This is due to the fact that a system is very “unwilling” to get very far

from an initial configuration, and not because it gets excited and there is a strong

dissipation of the collective energy, but rather due to “Anderson localization”, a

characteristic behaviour of quantum particles in a random potential. The motion

seems to be slower than one would expect, even though the nucleus might not get

very excited by the time it reaches the potential minimum.

The number of essential elements entering this emerging picture and of related
phenomena is truly astounding: i) one has to introduce several collective degrees
of freedom,; ii} one has to include a multisurface potential energy; iii) using a loose
language, one has to introduce “effective magnetic fields”; iv) the motion becomes
chaotic; v) interference phenomena should be properly taken into account for long
trajectories; vi) the quantum numbers become fractional; vii) very likely, in a correct
description one has to resort to a non-abelian gauge description; viii) dissipation
or friction are likely much more intricate phenomena than we have suspected until
now; ix) quasilocalization in collective coordinates; and the list seems simply to
keep growing. The nice thing about all this range of phenomena is the obvious
importance of the subject not only to nuclear physics but to chemistry, condensed
matter physics, atomic clusters and likely field theoretical models as well.

Support was provided under NSF Grant No. 89-06670.



References

1.

10.

11.

12.

D.L.Hill and J.A.Wheeler, Phys. Rev. 89, 1102 (1953); see also R.Balian and
M.Vénéroni, Ann. Phys. 135, 270 (1981) and references therein.

a) J.C.Tully, J.Chem. Phys. 93, 1061 (1990); b) F.Webster, P.J.Rossky and
R.A.Friesner, Comp. Phys. Comm. 63, 494 (1991); ¢} E.Shimshoni and
Y.Gefen, Ann. Phys. 210, 16 (1991) and references therein.

A.Bulgac, In “Proc. of 1989 Int. Nucl. Phys. Conf.”, Sac Paolo, vol. I, p. 94
(1989).

M.V.Berry, Proc. Roy. Soc. London, Ser. A392, 45 (1984); C.A.Mead and
D.G.Truhlar, J.Chem.Phys. 70, 2284 (1979); C.A.Mead, Chem. Phys. 49, 23
and 33 (1980).

A.Bulgac, Phys. Rev. A37, 4048 (1988), ibid C40, 2840 (1989), ibid C41,
2333 (1990).

G.F.Bertsch, Phys. Lett. 95B, 157 (1980); A.Bulgac, Phys.Rev. C40, 1073
(1989).

A.Bulgac, Phys. Rev. Lett. 87, 965 (1991).

P.Ring and P.Schuck, The Nuclear Many-Body Problem, Springer- Verlag, New
York, 1980, ch. 12 and Appendix D; M.Baranger and M.Vénéroni, Ann. Phys.
114, 123 (1978).

A.Bulgac and D.Kusnezov, Ann. Phys. 199, 187 (1990).

G.Delecrétaz, E.R.Grant, R.L.Whetten, L.Wéste and J.W.Zwanziger, Phys.
Rev. Lett. 56, 2598 (1986).

R.L.Whetten, G.S.Erza and E.R.Grant, Ann. Rev. Phys. Chem. 36, 277

(1985) and references therein.

A.Bulgac and D.Kusnezov, to be published.






