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Abstract
The elastic scattering of weakly bound projectile such as deuteron and ''Li nucleus are
examined including the break-up process to the continuum excited states. The eikonal
approximation is employed to derive the optical potential which includes the dynamical
polarization potential due to the break-up process. The dynamical polarization potential is
realized to be closely related to the fluctuation of the constituents of the projectile nucleus
in its ground state. Strong effect of the break-up process on the *Li-}2C optical potential
Is found, which is qualitatively similar to those known for the deuteron optical potential.
The elastic scattering differential cross section for **Li-'2C is calculated with the obtained
optical potential. It is found that the scattering cross section decreases rapidly for large

scattering angle compared with the ?Li elastic scattering.

b) present address



1. Introduction

The halo structure of the neutron drip-line nuclei has been extensively studied with
the secondary radioactive beam. The ''Li nucleus has attracted much experimental and
theoretical interest as a typical case. Since the successful measurement of the interaction
cross section has shown the anomalously large matter distribution of 'Li nucleus,! the
studies of the halo structure of the neutron drip-line nuclei have been achieved and are
under progress making use of various kinds of reaction mechanisms. Among them is the
elastic scattering which we are going to discuss in this paper. The theoretical study of
this subject has already been undertaken by both the phenomenological?) and microscopic
approaches®®,

The ground state of !Li nucleus is just below the *Li4+n+4n three-body threshold.
There exists no bound state for the subsystems, °Li+n and n+n. It is expected that
the ground state structure of ''Li nucleus is well deseribed by the (°Li+n+n) three-body
model, where Li nucleus is in the ground state and the halo is composed of the two
neutrons which are bound weakly to the *Li nucleus. (We will call these two neutrons as
’halo-neutron’.) Such three-body picture is strongly supported by the microscopic three-
body calculations.?®)

For the heavy ion elastic scattering including weakly bound nuclei, it has been known
that the double folding model for the real part of the optical potential fails.”) The studies
including the break-up process have revealed the important role of the break-up process
in the elastic scattering and the optical potential, particularly in the cases of deuteron
projectile®®) and the light heavy ion projectile.!®) It is strongly expected that the break-
up of the 'Li nucleus into *Li+n+n three-body continuum states contributes significantly
to the elastic scattering process.

In our previous paper'! which we will abbreviate as I in the following, we have
proposed to describe the reaction of the drip-line nucleus in the intermediate energy region
by the use of the eikonal approximation in a direct reaction framework. We have found
there the large cross section of 'Li — (°Li+n+n) three-body break-up. We will extend
the framework of I so as to analyze the optical potential and the elastic scattering of 1Li.

Recently Canto et.al.?) have discussed, in a approach intimately related to us, the
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effect of the break-up process on the optical potential and the elastic scattering of 11Li.
They mainly discussed the imaginary part of the dynamical polarization potential due to
the break-up process. In this paper we will show that the break-up process appreciably
affects the real part of the optical potential as well as the imaginary part. Our approach
is also advantageous in that the relation between the dynamical polarization potential and
the halo wave function is quite transparent.

The construction of the paper is the following. In section 2, the optical potential and
the elastic scattering for the case of the deuteron projectile are examined, for the purpose
of showing the usefulness of our framework in investigating the effect of the break-up
process on the optical potential and elastic scattering. In section 3, the optical potential
for 1'Li-12C system is discussed. In section 4, the elastic scattering of 11Li- 12C system is

discussed. In section 5, concluding remarks are presented.

2. Deuteron Projectile Case

The important role of the break-up process of the deuteron into (p+4n) continuum s-
tates on the elastic scattering process has been studied under the adiabatic approximation®
and the coupled discretized continuum channels approaches®!?(CDCC). We consider the
same problem, further simplifying by employing the eikonal and the adiabatic approxima-
tions. Assuming the straight line trajectory of the deuteron, we no longer need to solve
any quantum mechanical equation. Furthermore it provides us with the understanding of
the break-up effect in terms of the proton-neutron relative motion in the deuteron ground

state.

2.1 Elastic Scattering Amplitude

We describe the deuteron reaction in terms of the (p+n)-target nucleus three-body

model. The Schrédinger equation,

P?
{35 + ho + Uplep) + Un(en) } ¥y, 7a) = B¥(xyva), (2.1
describes the deuteron reaction with target nucleus where the target nucleus remains in

the ground state throughout the reaction. In Eq.(2.1), P represents the center-of-mass

momentum of the deuteron, p is the reduced mass of the deuteron and the target nucleus.
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ho is the internal Hamiltonian of the deuteron. Up(r) and U,(r) are the proton- and
neutron-target nucleus optical potentials, respectively. r, and r, are the coordinates of
the proton and the neutron with respect to the target nucleus. The spin degree of freedom
is ignored for simplicity.

We employ the eikonal and the adiabatic approximations to solve Eq.(2.1), as we did
in I. The eikonal approximation assumes that the deuteron moves along the straight line
trajectory specified by the impact parameter b. The adiabatic approximation assumes
that the internal motion of the proton and the neutron is at rest during the collision, and
amounts to neglecting Ag in solving Eq.(2.1). Under these approximations, the elastic

scattering amplitude is given by

fa(a) = —% ] dbe~"a® [< do| expixp (b + ;) +ixa(b - -;)] |60 > —1] (2.2)

¢o represents the ground state wave function of the deuteron. s is the projection of the
vector r = r, — ry onto the xy-plane where we assume the incident direction to be parallel

to z-axis. xp and x, are the phase shift functions and are defined by
I
Xoa(®) = =55 [ dslpa(b + ze.). (2.3

2.2 Optical Potential

According to the prescription proposed by Glauber!®), we can construct the local,
energy-dependent, optical potential Upi(R) in the following way. Define the optical phase
shift function xqp¢(b) by

exeri®) =< golexplixy (b + 5) +ixa(b - )]ldo > - (24)

Then we construct the potential which gives the same phase shift function as xope(3).
Assuming that the optical potential is local and spherically symmetric, it is uniquely
obtained as (Uspe(o0) = 0)

hvl d [t Xopt{d)
Uopt(R) = = RaR Jq 1'Jdb--——,._.__b2 —
b [ (VD)
B VR? 4 12

(2.5)




To discuss the relation to the single folding model, let us introduce the cumulant
expansion'® for the optical phase shift function yopt(b). Denoting Xp(b+5/2)+xa(b—s/2)

by Xpa(b, s), we get
+ o0

Xopt(8) = 3 x(b). (2.6)

k=1
First few terms of the expansion are given by
ixM(b) =< ixpn >
ixP(b) = % < (iXpn— < ixpn >)? > 2.7)
XO0) = 25 < (ixpn— < ixpn >)° >,

where the notation < ... > represents the matrix element with respect to the wave function

$o, for example,

< tXpn >=< dolixpn(b,s)|do > . (2.8)

For each term of the cumulant expansion of Eq.(2.7), we have corresponding decom-

position of the optical potential,
+co
Uop(R) = > UM(R). (2.9)
k=1

As is verified easily, the first order term just coincides with the optical potential obtained

by the single folding model,

) +Ua(R-1)} (2.10)

UO(R) = jdr|¢o(r)|2{UP(R+ 2 2

The remainder of the expansion of Eq.(2.9) thus gives the dynamical polarization potential,

AU(R) = Uspn(R) = UV(R) = Jf:o UR(R), (2.11)

k=2

The cumulant expansion is an expansion with respect to the fluctuation of the internal
proton-neutron motion in the ground state of the deuteron. Neglection of the fluctuation
gives us the single folding model. The dynamical polarization potential defined by Eq.(2.11)

thus reflects the extent of the fluctuation. It is evident that the dynamical polarization
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potential becomes significant for the projectile whose ground state is weakly bound and

posesses large fluctuation.

2.8 Analysis of d-*® Ni reaction

We analyze the optical potential of the deuteron with *®Nj at Ey= 80MeV. We ana-
lyzed various cross sections for this system in I. As in I, the internal wave function of the
deuteron is taken to be S-state. The optical potentials of p-33Ni and n-38Ni are chosen to
be conventional Woods-Saxon shape. No spin-orbit force is included. Parameters of the
potentials are the same as those employed in Ref.12) for the analysis by CDCC method. We
neglect the effect of the Coulomb break-up process, that is, we assume that the Coulomb
force between the deuteron and the target nucleus works between the center-of-masses of
both nuclei.

In Fig.1, solid curves show the deuteron optical potential given by Eq.(2.5). The
optical potential by the single folding model, U{Y(R), is also shown by dashed curves.
The dynamical polarization potential is shown in Fig.2 by the solid curve which is the
difference between the solid and the dashed curves in Fig.1. The repulsive break-up effect
on the real part of the optical potential, which has been stressed as the common feature of
the weakly bound projectiles,®1%) is clearly seen in the surface region. The imaginary part
increases,which is thought to come from the loss of the flux due to the elastic break-up
process.

Also shown in Fig.2 are the first few terms of the cumulant expansion of the dynamical
polarization potential defined in Eq.(2.9). Inclusion of up to 4-th order contribution is
presented. It should be noted that the second order contribution, U(*)(R), is qualitatively
similar to the full dynamical polarization potential, though the higher order contributions
even higher than 4-th order are required for the quantitative discussion.

It will be worth while to further investigate the second order potential, U(?)(R), since
it gives the correct sign of the dynamical polarization potential and its structure is fairly
simple. By its definition, the second order potential reflects the fluctuation of the phase
shift function with respect to the internal motion of the deuteron. Decompose the phase
shift function, xpn(b,s), into the real and the imaginary parts, xpn = Rexpn + 1Imxpn,

each term of which comes from the real and the imaginary parts of the nucleon-target
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nucleus optical potential, respectively. We note that both Reypn and I MXpn are positive
definite since both the real and imaginary parts of the nucleon-nucleus optical potential
are negative for whole spatial region (see Eq.(2.3)). The second order optical phase shift
function defined by Eq.(2.7) can be expressed as

RexP(b) =< Rexpn >< Imxpn > — < RexpnImxpn >
= — < (Rexpn— < Rexpn >)Imxpn— < Imxpn >) >

Imx\®(b) = %[{< (Rexpn )’ > — < Rexpn >*} — {< (Imxpn)? > — < Imxpn >2}]
(2.12)

For not very high incident energy, both the real and imaginary parts of the phase shift
function are expected to be of the same sign and nearly proportional, Rexpn o I M Xpns
because of the near proportionality of Rel,, and ImU,,. Then we find that Rex(?
becomes negative. The second order potential has opposite sign to x(¥ (see Eq.(2.3)) and
will be positive.

As for the imaginary part, it is a difference between the fluctuations of the real and the
imaginary parts of the phase shift function. Since the shapes of the real and the imaginary
parts of the phase shift function are similar, its sign depends on the strength of the optical
potential. For the energy region below 100MeV/A, the real part of the optical potential
is dominant. We then get a positive contribution for x{?)(b) and negative contribution for
ImU). The above discussion explains the sign of the second order potential shown in
Fig.2.

In Fig.3, we show the angular distribution of the deuteron scattering. Dotts are the
experimental result.!¥) Dotted curve is the analysis by the CDCC method which solves
Eq.(2.1) quantum mechanically. Solid curve represents the cross section calculated with
the optical potential defined by Eq.(2.5), that is, we solved the Schrédinger equation with
the optical potential of Eq.(2.5) quantum mechanically. Nice reproduction of the CDC-
C result indicates that the reaction mechanisms including break-up process are properly
taken into account in the optical potential of Eq.(2.5). Dashed curve is the cross section
by the scattering amplitude of Eq.(2.2), namely, the cross section by the optical potential
of Eq.(2.5) under the eikonal approximation. The momentum transfer g¢ is related to the

center-of-mass scattering angle 8 by ¢ = 2Ksin(6/2). The difference between the solid
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and the dashed curves represents the accuracy of the eikonal approximation in calculat-
ing the elastic differential cross section. Though we used the eikonal and the adiabatic
approximations in deriving the optical potential of Eq.(2.5), the error due to the straight
line trajectory for calculating the angular distribution of the elastic scattering is consider-
ably removed by solving quantum mechanically the Schrédinger equation with the optical

potential of Eq.(2.5).

3. Optical Potential of 'Li

We assume that the ground state structure of !1Li is well described by the (°Li+n+n)

three-body model. We describe the ''Li reaction by the (°Li4+n4n)-target nucleus four-
body model.

P2
{ﬂ + ho + U(R, 4, rg)}\IJ(R,rl,rg) = E¥(R,ry,12), (3.1)
UR,ry,r2) = Us;y(R) + Un(R 4 11) + Un (R + 13). (3.2)

R, P represent the relative coordinate and the momentum between ''Li and the target
nucleus, respectively. r; is the coordinate vector of i-th neutron with resepct to °Li. u is
the reduced mass of 'Li and target nucleus. hg is the internal Hamiltonian of ''Li as a
three-body system. Usy;(R) and Uy (r) are the optical potentials of ?Li- and neutron-target
nucleus, respectively. For simplicity, we ignore the difference between the center-of-masses
of 'Li and ?Li.

The wave function ¥(R,ry,r;) describes the reaction process where both °Li and
target nuclei are in their ground states. We presented in I detailed discussion of the reaction
dynamics involved in Eq.(3.1) under the eikonal and the adiabatic approximations. Under

the approximations, the elastic scattering amplitude is given by
1K : .
fala) = =5 [ dbemiab{< gojerxtbmiigy > 1), (3:3)

x(b,81,82) = xs1i(b) + xa(b +51) + xa(b + 52), (3.4)

where K is the relative wave number. s; is the projection of r; onto the plane perpendicular
to the incident direction. ¢o represents the ground state internal wave function of 11Li as

a three-body system and satisfies

hodo = eadho. (3.5)
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XoLi(b) and xa(b) are the phase shift functions for Us;(R) and U,(r), respectively.
Let us define the optical phase shift function xope(b) by

e:lXOP:(b) = ¢0|eix(b:91182)I¢0 >

3.6
= eingi(b)"'iX!n(b), ( )

eiXan(®) ¢0|ean(b+sl)+an(b+’2)|¢0 > . (3.7)

The optical potential is obtained from Xopi(b) by the same formula as Eq.(2.5). As Xopt (D)

is given as the sum of xs1;(b) and x2n(b), the optical potential is also given as the sum of

°Li and the halo-neutron contributions,

Uopt(R)} = Uspi(R) + Uzn(R), (3.8)

UsLi(R) is the same potential of °Li-target nucleus as we employed in Eq.(3.1) as input.
Uzn(R) is obtainable from x2,(b) by the same procedure as Eq.(2.5) and includes the effect
of the halo-neutron break-up.

As we have done in the deuteron case, we introduce the cumulant expansion for the

phase shift function and the optical potential to the halo-neutron part,

+oo

ixaa(b) = ) ixie (b), (3.9)
k=1
oo

Um(R) =Y Uy (R). (3.10)
k=1

Each term of the expanded phase shift function is defined in the same way as Eq.(2.7).

The lowest order term gives the single folding model,
V(R = [ drpun(r)Ua(R ), (311)

where p2,(r) represents the density distribution of the halo-neutrons. The single folding

potential of ! Li-target nucleus is given by

Uteua(R) = UsLi(R) + USY(R) (3.12)
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The remainder of the expansion of Eq.(3.10) gives the dynamical polarization potential

which reflects the break-up process of 'Li into (°Li+n+n) three-body continuum states,
+oo .
AU(R) = Upa(R) - U (R) = 3" USE(R). (3.13)
k=2

As an example, we will analyze the optical potential of !Li-1?C system. First we
discuss the radial dependence of the potential at £/4 = 60MeV. We utilize the same

set-up as we used in I. We assume (p, /2)%_, configuration for the halo neutrons,

$o(r1,r2) = [¢(P1/2)(r1 )1/)(111/2)(!‘2)] J=0- (3.14)

Single particle wave function ¥y, ,)(r) is constructed with the Woods-Saxon potential,
whose depth is chosen so as to set the single particle binding energy equal to 0.1 MeV. As
for the neutron-'2C optical potential, we use conventional Woods-Saxon potential without
spin-orbit force. Parameters for the potential are the following,

V=374MeV rp=12fm ag=0.75fm
(3.15)

W =10MeV  rr=13fm ar=06fm

Above parameters are enough for the calculation of Uz,(R) of Eq.(3.8). To get a
total 1Li-'?C optical potential, we should add °Li- '2C optical potential, Us;(R), to
it. At present no phenomenological potential for Usy;(R) is available. We also took the
Woods-Saxon potential for this case, whose parameter is chosen as

V =140MeV rp=07fm ar =09fm
(3.16)
W =2MeV  r;=098fm a;=0.75fm
Radius parameter Rp is given by rg(91/3 + 121/3).

Figure 4 shows the obtained ''Li-'*C optical potentials. Usy(R) of Eq.(3.8) and
the single folding result, Uz(;)(R), of Eq.(3.11) are compared. Usy;(R) is also shown for
reference. Long range nature of the optical potential of the halo-neutron part is due to
the spatially extended density distribution of the two neutrons which constitute the halo.

As is expected, the strong effect of the break-up is seen in both the real and imaginary
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parts of the optical potential. Repulsive effect for the real part and the increase of the

absorption are the same properties as those of the deuteron case.

Figure 5 shows the decomposition of the dynamical polarization potential into the
cumulant expansion. As in the case of the deuteron shown in Fig.3, the second order
result gives the same sign as the full dynamical polarization potential. However, the
convergence of the cumulant expansion is very slow. It means that the break-up process is
highly non-perturbative and the classification according to the moments of the fluctuation

is not so useful, though it gives the single folding model in the lowest order.

We next investigate the energy dependence of the optical potential. Solid curves in
Fig.6 show the energy dependence of the halo-neutron contribution to the optical potential
at R = 6.5fm. Folding model results given by Eq.(3.11) are also shown by dashed curves.
The parameters for the optical potential of n-'?C system is given in I. The abrupt changes
of the curves at a few energies come from the different parametrization of the n-12C op-
tical potential for each energy interval. As for the real part, the dynamical polarization
potential increases for low incident energy. In the low incident energy region the dynam-
ical polarization potential is so large that it almost cancels the attractive potential due
to the single folding model. The imaginary part of the optical potential due to the halo-
neutron is closely related to the total reaction cross section and the two-neutron removal
cross section of 1'Li. In the energy region considered in this paper, the total reaction
cross section by our theory is larger than that by the folding model as discussed in I. At
the incident energy of 200MeV /A, the dynamical polarization potential almost disappears.
This is consistent with the discussion given below Eq.(2.12), that is, the sign of the the
imaginary part of the dynamical polarization potential depends on the relative strength of
the real and imaginary parts of the neutron optical potential. At about this energy, the
real part of the optical potential becomes less significant than the imaginary part. Above
this energy the inclusion of the break-up effect is expected to diminish the absorption.
The same conclusion is obtained in the analysis of the two-neutron removal cross section

at high incident energy based on the Glauber’s multiple scattering theory.1®

4, Elastic Differential Cross Section of 'Li
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The differential cross section for the elastic scattering of 1'Li-12C system at E/A =
60MeV is calculated using the optical potential obtained in the preceding section and
is shown in Fig.7. Solid curve represents the result by solving quantum mechanically the
Schrédinger equation with the optical potential of Eq.(3.8). Dotted curve is the differential
cross section by the scattering amplitude of Eq.(3.3) under the eikonal approximation.
The small difference between the solid and the dotted curves indicates that the eikonal
approximation in calculating the angular distribution is quite accurate for this system.

For comparison, the cross section with the optical potential of the single folding model
given by Eq.(3.11) is also shown by the dashed curve. The dot-dashed curve represents the
cross section with Usp;(R) only, that is, the cross section when we neglect the interaction
between the halo-neutron and the target nucleus. In other words, it represents the cross
section of °Li-'2C elastic scattering with the assumed optical potential of Usy;(R). It is
however plotted in the center-of-mass frame of ' Li-12C.

At large scattering angles, the solid curve is much smaller than both the dashed and
the dot-dashed curves. Compared with the dot-dashed curve which represents °Li-12C
scattering, the solid and the dashed curves include the halo-neutron contribution to the
optical potential. The attractive contribution to the real part of the optical potential works
to increase the cross section at large angles while the absorptive contribution to decrease
it. The fact that the cross section of the single folding model is close to that of Li-12C
indicates that the effect of the halo contribution to the real and the imaginary parts works
just to cancel each other. The inclusion of the break-up of the halo-neutron contributes
to weaken the real part of the optical potential and to make stronger the imaginary part.
Both contributions decrease the cross section at large scattering angle. Then the solid
curve predicts the small cross section of 'Li-12C at large scattering angle.

To investigate the role of the dynamical polarization potential in more detail, we
compare the followings in Fig.8; The solid and the dashed curves are the same as those of
Fig.7, i.e., the cross section calculated with Uspi(R) = Uspi(R) + Uza(R) and Ugla(R) =
Uspi(R) + Uz(rll)(R), respectively. The dotted curve represents the cross section where the
real part of the dynamical polarization potential is included, Usy;( R) +U2(;) (R)+ReAU(R).

In the dot-dashed curve the imaginary part of the dynamical polarization potential is
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included, Us1;(R) + Uélll)(R) + tImAU(R). Both the real and imaginary parts of the
dynamical polarization potential work to decrease the elastic differential cross section to
the approximately same extent. The decrease of the cross section due to the imaginary
part of the dynamical polarization potential would be simply understood by considering
that the 'Li nucleus is easy to break-up on receiving the large momentum transfer. The
real part of the dynamical polarization potential, though it is difficult to get an intuitive
picture, plays also an important role as in the case of the deuteron scattering.

The uncertainty of our calculation mainly comes from the lack of the knowledge of
the *Li-12C interaction. We hope that the elastic scattering cross sections of both 'Li
and °Li will be measured to make a definite discussion on the role of the halo-neutron.
At present the available data for ''Li-'2C reaction at intermediate energy region is only
the total interaction cross section. Our analysis in [ showed that it was reasonably well
reproduced by our model. To examine the dependence of the qualitative features discussed
above on the choice of the assumed ?Li-!?C optical potential, we show in Fig.9 the elastic
differential cross section calculated when the parameter r; in Eq.(3,16) is varied from
0.98fm to 1.08fm. It should be noted that this choice of °Li-12C optical potential would
somewhat overestimate the total interaction cross section of 11Li-12C. The elastic scattering
cross sections of Fig.9, though small in magnitude compared with those in Fig.7, show
features qualitatively very similar to those of Fig.7. Thus the discussion concerning the
role of the halo-neutron on the cross section will hold irrespective of the assumed Usy;( R)

optical potential.

5. Concluding Remarks

We have discussed on the basis of the eikonal approximation the role of the break-up
process in the optical potential and the elastic scattering of weakly bound projectiles such
as deuteron and !'Li nucleus.

Our framework provides us with the description of the dynamical polarization po-
tential due to the break-up process in terms of the phase shift function. Especially the
dynamical polarization potential is discussed in relation to the fluctuation of the nucleon

motion of the projectile ground state. The deuteron scattering has first been treated in our
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theory and its result has been compared with the CDCC calculation. This test example
has demonstrated that our treatment is a quite good approximation to a description of the
break-up process at intermediate and high energies.

We have applied our framework to 'Li-12C elastic scattering at E/A =60MeV. We
have found strong effect of the break-up process both on the optical potential and on
the differential cross section. As in the case of the deuteron, the break-up of the halo-
neutron makes a repulsive contribution to the real part and an absorptive contribution to
the imaginary part of the optical potential. Because of this property, the break-up effect
works to decrease the elastic scattering cross section at large scattering angle significantly
compared with the folding model result. Comparison of the cross section is also made with
the elastic cross section of 9Li-12C at the center-of-mass frame of 11Li-12C. Qur calculation

predicts that the cross section of 1'Li-12C elastic scattering is much smaller than that of
SLi-12C.
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Figure Captions

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

The optical potential for d-*®Ni system at E = 80MeV. Solid curves include the
break-up effect while dashed curves are the single folding model.

The dynamical polarization potential of d-*®Ni system (solid curves)} and its decom-
position into the cumulant expansion. The contributions up to the 2nd, 3rd and 4th
order are shown by dotted, dashed and dot-dashed curves, respectively.

Angular distribution of d-**Ni elastic scattering at E = 80MeV, quoted from I. Dashed
curve is calculated by the eikonal approximation, dotted curve by the coupled dis-
cretized continuum channels method®) and solid curve is calculated with the optical
potential which is constructed by the use of the eikonal approximation. Dotts are the
experimental data!®,

The optical potential of ' Li-'2C system at £ = 60MeV/A. Halo-neutron contribution
to the optical potential is shown by the solid curves. Halo-neutron contribution by
the single folding model is also shown by dashed curves. °Li-!2C optical potential
assumed in our calculation is shown by dotted curves.

The dynamical polarization potential of ''Li-'2C and its decomposition according to
the cumulant expansion.

The energy dependence of the halo-neutron contribution to the !'Li-'2C optical po-
tential at R= 6.5fm. Solid curves represent the halo-neutron contribution including
break-up effect. Dashed curves represent the potential by the single folding model.
The elastic scattering cross section of 'Li-1?C at E/A = 60MeV/A. Solid curve
represents the cross section with the optical potential of our theory. Dotted curve
is the cross section with the same optical potential under the eikonal approximation.
Dashed and dotted curves are with the potential of single folding model and the optical
potential of °Li-!?C system, respectively.

The elastic scattering cross section of '1Li-}2C at E/4 = 60MeV/A. Solid and the
dashed curves are the same as those of Fig.6. Dotted and Dot-dashed curves are
the cross section with the inclusion of the real part and the imaginary part of the
dynamical polarization potential to the single folding potential, respectively.

The same as Fig.6 but the parameter of the optical potential parameter of °Li-12C is

16



slightly changed. See the text for the detail.
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