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It is necessary to understand the dynamics of large amplitude shape change in
order to describe a number of processes for which the statistical model fails. This
includes several effects associated with fission, including the emission of prescission
neutrons(1-3] and the emission of giant dipole photons[4]. On the theoretical side,
large amplitude shape dynamics is most commonly treated assuming the average
motion can be described by Newtonian mechanics with inertial and linear friction
parameters{5]. Recently, Bush et al. proposed a model of the shape dynamics of
highly excited nuclei from quite a different point of view[6]. They start with the
basic assumption that the highly excited nucleus can be described as an incoherent
mixture of Hartree-Fock configurations at a given energy. They concentrate exclu-
sively on the diffusion in the nuclear shape degrees of freedom avoiding a discussion
of inertia, friction or indeed any collectivity in the motion. Based on this picture,
they have calculated the diffusion coefficient for quadrupolar shape fluctuations using
the residual interaction to mix Hartree-Fock configurations.

In frictional dynamics, the Kramers theory[7] may be used to find the fission
decay rates. A corresponding theory can be derived from the diffusive dynamics
using the Smoluchowski equation. We show how this is done below. The end result
is equivalent to the Kramers theory, in the strongly overdamped limit of that theory.
We then discuss the numerical application to prescission neutron multiplicities. In
Ref. [6], the theoretical diffusion rate was an order of magnitude slower than found
in the analysis of Ref. [2]. Our analysis here of the measurement of Ref, [3] is a
factor of 5 different from the theoretical prediction, due mostly to the larger number
of prescission neutrons extracted from the later experiment.

We start from a generic rate equation
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where P; is the probability of finding the system in the state i and [;; is the rate
at which the system moves from one state to its immediate neighbor. This is a
generalization of the treatment of Ref. [6], which assumed all T; ; equal. To be more
realistic, we have to consider the effect of the level density on the rates. Detailed
balance requires that T';; and T';; be in the ratio of the final state level densities pi

and p;. In terms of these level densities, the rate equation may be expressed

dF;
- = —v(pi-1 s + piy1 P — piPiey — piPipy)

where v is a constant. To reduce the above to the Smoluchowski equation, we assume
that the states ¢ are uniformly separated in deformation by an amount A B and treat P
as a continuous function of 8. The finite differences are expanded P, = P + Ap %{},
etc. The result to order (AB)? is the Smoluchowski equation,
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where the diffusion coefficient Ds may be expressed in terms of microscopic quantities
(such as the residual interaction V; ;) as[6]
Ds =+ Zj:(ﬂi - Bi)* | Vi |* §(E; - E).

In deriving Eq. (1), we have also defined the temperature as the inverse logarithmic
derivative of the level density and used the chain rule, gﬁ = 3%'%%: Several
authors have applied the Smoluchowski equation to nuclear fission processes with the
fission variable as the generalized coordinate[8, 9]. It is interesting to note that the
fluctuation-dissipation theorem, relating the coefficient of the drift term to that of
the fluctuation term, follows directly from the above derivation.

A convenient feature of Eq. (1) is that the diffusion coefficient can be scaled out

of the equation by defining a new time variable 7 = Dgt. Thus we need only solve

the equation with Ds = 1 and all solutions corresponding to different Ds’s can be
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obtained simply by rescaling the time. This scaling property is well-known in previous
studies using the Smoluchowski equation[8, 9]. We will calculate the decay rate by
considering the the probability current I{3,t) which crosses 8 at time ¢. This may

be expressed as

1.9V

The decay rate ) is defined

1(8,%)
Il dB'P(B)’
It is seen to obey the same scaling, A(Dg) = ADjs, where A is the decay rate for
Dg = 1.

AB,t) =

We now derive the stationary decay rate for Eq. (1) for a particle trapped inside
a parabolic barrier. The assumption of the steady state means that we will solve the

time-independent diffusion equation
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We first have to specify the form of the potential V(). We assume the potential has a

parabolic shape, upward-curving near the equilibrium deformation 8; and downward-

curving near the barrier top at £,

V() =3ik(B~B), whenf<a
=Up — 1ky(B - B;)?, when 8 > a. (3)
Here Up is the barrier height, and the parameter a is determined to make the parabo-

las join smoothly. Following Kramers’ derivation[7, 10], we write the probability dis-

tribution in terms of a new variable ¢ as

P(9) = £(6) exp(~ L2



The ¢ satisfies the equation

225_ 18V & =0
98* Tapog
This equation has the solution
NI M 4 ()
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where Z, is a constant to be determined. The other constant in the solution of the
second-order differential equation is fixed by demanding that ¢ vanish at large 3. To
fix Z,, we note that in the vicinity of 8 the distribution will be thermal, i.e. described

by the function

P(B) = 5 exp(L20) ~ L exp(— 25— )

where % is a normalization constant which will be set equal ¢ (A1) Carrying out the

integration in Eq. (4), only the integrand near 8, is important, and we find

~ kgﬂ _ 2«7 1
(B / exp(— k2 =7

We now evaluate the probability current at the barrrier, Eq. (2). This is

1 8V opP 1 Us ks

1(8;) = T P+ %]Ihﬁz ==7 (=N 5

The total probability inside the barrier is approximately

1 ) 1 .
S =7 [ exp(—g=ki(8 ~ 1)%)dB

2rT

Zj exp(= gk (8~ 1))dB = /22T

Finally, the stationary value of the decay rate is the ratio of the current to the total

probability,

A, = Iig:)) = ';:;fz exp(—-[;—B)- (5)
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This result can be compared with the Kramers’ stationary decay rate[7]

= L+ () = L exp(_ U
M= 5o {1+ (g PH =~ 5 -l exp(—70)

where 7 is the reduced friction coefficient. To connect this with Eq. (5), we explicitly
introduce the inertial parameter M in the Kramers formula. The oscillator frequencies
w; are expressed as w; = \/% The reduced friction coefficient v is related to the
diffusion coefficient by the Einstein relation[11}, yM = ﬁ% Then in the limit of large

v the Kramers’ formula reduces to

wiws U Y Vkik;

B, _ Vkik; _Us, _Vkiky _Us
2my exp(—~71;- T 2wy M, exp( )= 2=T Dy exp( T)
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identical to our result, as should be expected.

We now display some of the characteristics of the solution of the Smoluchowski
equation. We choose parameters corresponding to the nucleus 8Er following
Ref. [12]. The decay rate is most sensitive to the height of the fission barrier Uz
and the difference 8, = 8, — B, between the yrast state and the saddle point deforma-
tions. The fission barrier height is quoted in Ref. [12] for a range of angular momenta
and we use those, interpolating or extrapolating to angular momenta not included
in their table. The deformation at the saddle point is determined using their Fig. 2,
whicﬁ shows the barrier as a function of the separation of the two mass centers. To
convert to an equivalent deformation 8, we demand that quadrupole moments be the
same as for a spheroid with the deformation 8,. This procedure is rough, but high
accuracy is not possible without a more detailed consideration of the fission path
when calculating the diffusion coefficient. The saddle point deformation does not
depend strongly on angular momentum; we take a fixed value Bz = 1.20. The yrast
deformation B, is determined from the rotating liquid drop model. This also does

not depend strongly on angular momentum for the range considered; our value here



is B1 = 0.42. The potential energy function is shown in Fig. 1 and the values of the
parameters are given in Table 1.
We now describe the results of numerical solution of the Smoluchowski equation.

We assume an initial probability density
|4
P(B,0) x exp(——#)

with T, = 0.3 MeV as suggested in Ref. {13]. In Fig. 2, we plot time evolution of
P(B,7) for ®Er at J = 654 and T = 2.5 MeV as a function of 7 in two cases, (a)
with and (b) without the fission barrier. The point of this comparison is to show that
the system reaches a stationary decaying state in one case but not in the other. The
location of the saddle point is indicated by an arrow in the figures. The two cases
(a) and (b) are clearly distinguished in Fig. 2 where the role of the fission barrier
becomes especially transparent.

We mention briefly the sensitivity of the decay rate to the parametrization of
Eq. (3). According to Eq. (5), the stationary value A, of the decay rate depends on the
barrier height Uy and the nuclear temperature as well as the oscillator parameters &;.
In our calculations, we have used two parabolas with the same oscillator parameters
ki1 = ky. Once Up and B, are fixed, there is not much room left to vary the oscillator
parameters. Moreover, /k1k; and hence A, is not affected by more than just a
few percent even though we change the ratio % as much as possible, We therefore
judged it sufficient to take the parabolas with the same oscillator parameter in our
main calculations.

In Fig. 3, we show the calculated A(7) across the saddle point as a function of 7
for two cases, J = 65% and 72k of ' Er. In this figure, we can clearly see the transient
behaviour and the saturation of decay rate which occur under the influence of fission

barrier. On the other hand, the decay rate which is calculated from the pure diffusion



equation without any fission barrier does not show any evidence for saturation as can
be seen from the dashed line in Fig. 3. But note the over-shooting of the decay
rate at higher partial waves, which has been also discussed by Lu et al.[14]. In the
last two columns of Table 1, we list the stationary values of decay rate AT* which is
evaluated using Eq. (5) and AY*™ which is obtained from our numerical calculations.
The stationary value A, of the fission decay rate shows a strong dependence on A
for fixed J and also a strong dependence on J for fixed A. However, the origin for
such dependence in two cases is quite different. In Table I, we also list the nuclear
temperature T' together with the potential parameters. When J is fixed, the main
reason A, decreases as A becomes smaller is the decrease in T due to the cooling by
neutron evaporation. Here the shape of the potential barrier remains more or less the
same for all the nuclei participating the chain. On the contrary, when A is fixed, the
temperature does not depend on J very much, but the barrier height changes with
J, giving a larger rate A, for higher J.

The equilibration time 7, may be defined by the time interval until A reaches its
stationary value. The 7, is found to exhibit more or less the same value 7, = 0.068
for all J’s and for all A’s. This also corresponds to an extremum point in the dashed
line (without the fission barrier) of Fig. 3 where 7, is indicated by an arrow. Our
result suggests that 7, does not depend on T nor the shape of the potential. The
equilibration time ¢, which corresponds to a specific Dg can be found from the scaling
t, = ﬁ‘; Therefore, ¢, is inversely proportional to Dg and hence proportional to the
reduced friction coefficient v as a result of the fluctuation-dissipation theorem. This
phenomenon has been also studied by Weidenmiiller and Zhang[8] and they found
such dependence of ¢, on v too in the overdamped situation, but could not decide
clearly the dependence of ¢, on Ug and T. Our result shows that T, is the same for

any combination of Uz and 7.



We finally turn to the calculation of neutron multiplicity prior to fission. The
decay rates will change as neutrons are emitted due to the cooling of the system,
reflected in the temperature dependence of the statistical neutron decay rate and of
the fission decay rate A = 16\; where Dy is proportional to T°[6]. We perform this part
of the calculation with a numerical cascade. Let Y,(t) be the occupation probability of
the s-th nucleus in the neutron decay chain which terminates at the s,-th step either
by fission or by neutron emission made impossible due to short of available excitation
energy E} = E; | — 2T, , — B, ,_;. Here T, and B,,, are the nuclear temperature and
the neutron separation energy of the s-th nucleus, respectively. Then Y, (t) satisfies a

set of coupled equations
d
EY;(t) = /\n.s—lY;-l(t) - [/\n,a + /\f,a(t)]Ys(t) s = 1& 2a 8 (6)

where A, and Ay, are the neutron emission rate and the fission decay rate at the
s-th step, respectively, and Ao = A,,, = 0 at beginning and end of the neutron

decay chain. The neutron emission rate is calculated by the Weisskopf formula[15]

2mR* E*— B, " .
kA, = 7 ( ” ) exp(2y/a(E* — B,) — 2V aE*)

where m is the mass of the emitted neutron and R is the radius of the nucleus. In order

to calibrate this formula, o is adjusted to give the neutron emission rate of 50 keV/h
which is calculated in a more elaborated statistical model for 10 +142 Nd —158 gy
at 207 MeV and J = 654[16). Also let Y, #(t) be the probability of ending the process
with fission at time ¢ at the s-th step. It then satisfies

Dot~ nvae)

and hence when t = 400, it becomes
Y, = )Y, (t)dt.
(0) /0 As(8)Ya(t)
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The neutron multiplicity prior to fission is defined by adding all the neutrons released

from the entire decay chain,
30 s
UJ) = 3 (s = 1)Y, 4(c0)/ 3_ Y, 5(c0)
s=1 s=1
where J is the angular momentum for which the calculation is originally performed
and the observed neutron multiplicity v is obtained by taking average among the
participating partial waves.

In Fig. 4, we present our results on the neutron multiplicity v prior to fission.
First, we have solved Eq. (6) numerically assuming Ds does not depend on T along
the decay chain. The thin dashed line is obtained by taking A;(t) = A(£)Ds while the
thin solid line is the result of neglecting the transient behaviour of the fission decay
rate and taking Ag(t) = AY*™ Dy where A¥“™ is the constant stationary value of At)
(see the last column of Table I). These two thin lines clearly demonstrate that the
transient behaviour in the fission decay rate does not affect the prescission neutron
number very much. Bhatt et al. have also reached the same conclusion[17]. The
reason is as follows, For small values of Dyg, the neutron decay rate A, is much larger
than the fission decay initially (because of the diffusion hindrance). As neutrons are
emitted, the system cools, eventually favouring fission because of its lower barrier.
On average, the fission occurs when the two decay rates are comparable. Thus, in
this limit the initial transit time ¢, plays no role. In the unphysical opposite limit of
large values of Dy, the t, becomes too short compared to the neutron decay lifetime
to affect v either. Therefore, we conclude that most of the enhancement in » comes
from the reduction of the fission decay rate in the overdamped process(18]. In view of
this, we have calculated » neglecting the effect of the transient time completely. The
thick solid line of Fig. 4 is the calculated result taking the temperature dependence

of Ds into account. The fission decay rate of the s-th nucleus is then given by
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Afs = Af,"’;"“Dﬁ(%P where Dy is the diffusion coefficient in the parent nucleus *8Er,
This temperature dependence causes emission of up to almost one more neutron than
in the case of the temperature independent Dj.

Gavron et al. measured the prescission neutron multiplicity for the reaction 80 +
"INd — '8Er at 207 MeV and reported the value v = 2.7 + 0.4[2]. However,
there has been a conflicting report on the neutron multiplicity by Hinde et al. in
their more recent measurement for the same reaction at the slightly lower energy of
178 MeV([3]. They found that v = 4.2 £+ 0.3. Since v is expected to increase with
increasing excitation energy[14], the conflict between the two measurements is quite
severe. Assuming v increases by 0.4 for each 10 MeV of excitation energy[14], the
expected v at 207 MeV would be 5.4. One might hope that a microscopic calculation
of v would shed some light on this problem. We examined the recent theoretical
predictions for Dy by Bush et al.[6]. They obtained Dy = 3.8 + 1.6 keV/# for 1®Er
at T' = 2.5 MeV which is shown by a shaded area in Fig. 4. The uncertainties in the
theoretical Dy are due to the Monte-Carlo averages and sums. In Fig. 4, the data
by Gavron et al. (lower rectangle) and by Hinde et al. (upper rectangle) are also
shown. From the thick solid line, we can extract the range of Dg corresponding to
the two measured v’s; Dg(Gavron)= 42.0 + 9.0 keV/A and Ds(Hinde)= 17.7 £ 3.0
keV/h. They are larger than the theoretical value of Bush et al. by a factor of
11.1 and 4.7, respectively. Clearly, the theory of Bush et al. is incompatible with
either measurement. Further progress might result from examining other effects of
the fission hindrance, for example the giant-dipole photon spectrum[4]. It would be
interesting to see what values of Dy are favoured by this data.

In summary, we have solved the Smoluchowski equation for quadrupolar deforma-
tions. The solutions exhibit two nice properties which help us to analyze the fission

process systematically. One is the scaling relation and the other is an analytical ex-
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pression for the stationary value of the decay rate. The latter is just the overdamped
limit of the well-known Kramers’ stationary decay rate. We find that the equilibra-
tion time is pretty much the same for any combination of the height of the fission
barrier and the nuclear temperature. One of the important results in our calculations
is that the transient behaviour in the fission decay rate plays a very small role in
determining the prescission neutron multiplicity quite contrary to the underdamped
process. It is due to the fact that the Smoluchowski equation scales the equilibration
time and the fission decay rate in an opposite way. The diffusion coefficient extracted
by our calculation from the existing two data is larger by a factor of 5 ~ 11 than
the theoretical estimation of Bush et al. based on their recent derivation of the dif-
fusion coefficient from mixing of Hartree-Fock configurations[6]. On the other hand
we predict that the neutron multiplicity of %0 + 2 Nd — 158Ey at 207 MeV which
corresponds to the theoretical Ds would be ¥™* = 6.6 1 0.5. which can be compared
to v ~ 5.4 extrapolated from the Hinde’s result according to a recent calculation on
the neutron multiplicity in terms of the excitation energy[14].
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number 90-17077. One of the authors (DC) acknowledges support from the Ministry
of Education, Korea through the Professor Training Program. He is also grateful to
Professor G.F. Bertsch for the warm hospitality extended to him during his visit to
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TABLES

TABLE 1. Values of temperature (T'), oscillator parameter (k) and barrier height (Ug)
adopted for the potential energy function plotted in Fig. 1 and used in calculations of the
stationary value of decay rate (A,) for various spins and nuclei. The decay rate (AT*) in
the sixth column is evaluated by Eq. (5) and the decay rate (ANum) in the last column is

from the solution of the Smoluchowski equation,

J (h) Nucleus T (MeV) k (MeV) Ug (MeV) ATh ANum
65 158 pp 2.59 40.1 6.10 0.234 0.232
155 By 2.19 39.4 6.00 0.186 0.184

152, 1.75 38.5 5.86 0.123 0.122

195, 1.07 37.4 5.69 0.027 0.027

69 158 gy 2.54 26.9 4.09 0.337 0.339
72 2.50 16.5 2.51 0.385 0.406
75 2.45 5.6 0.85 0.257 0.327
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FIGURES

FIG. 1. Our potential energy functions (solid line) for 18 Er at J = 65k, 69% and 725
are compared to those given in Ref. [12] (dashed line). The potential parameters adopted

are given in Table I.

FIG. 2. Evolution of the probability distribution P(8,r) along 7 (a) with and (b)

without fission barrier. Locations of the saddle point are indicated by an arrow.

FIG. 3. Decay rate A(7) across the saddle point for 18Er at J = 65k and 72% is
plotted as a function of 7. The dashed line is the decay rate calculated from the pure
diffusion equation without the fission barrier. The arrow indicates the transient time To-
Both axes of the A and the 7 are dimensionless. For a given diffusion coefficient Dg, they

are simply translated by A = ADg and t = 7/Dg.

FIG. 4. Prescission neutron multiplicity is plotted in terms of the diffusion coefficient
Dyg in the parent nucleus '°*Er. The thin lines are obtained assuming Dy does not depend
on T while the thick line takes the full account of T dependence along the decay chain.
The time dependent fission decay rate As(t) has been used in the (thin) dashed line but
only the stationary value of it has been considered for the (thin and thick) solid line thus
excluding the transient time completely. The shaded area represents the range of Dy derived
in Ref. [6]. Two rectangles show the recent data on v by Gavron et al.[2] (lower one) and

by Hinde et al.[3] (upper one).
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Fig. 1 Distance between Mass Centers [R,]

40 s lo.sl LI ll.ol LI I1.5l LI Iz‘ol LI l2.6l 1
NRARS RERRE RARRS RARRY RAR

Potential Energy [MeV]

|
11 I L1 11 I I . I | -] ll' L \
0.0 0.5 1.0 1.5 2.0

B




Fig. 2
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