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Abstract

The correlated BCS (CBCS) for a proton-neutron system is introduced by first-
order perturbation theory, in which the quasiparticle interactions dropped in the BCS
are gpproximately taken into account. The formulation of the occupation probabilities
in the CBCS is derived in the angular momentumcoupling Jscheme. The applications

of the CBCS for *8Ti show some improvements compared to the standard BCS theory.



1 Introduction

The BCS theory developed by Bardeen, Cooper and Schrieffer [1] has successfully
explained the superconductivity of the superconducting metals at very low tempera-
ture. The adoption of the BCS theory into nuclear physics followed the suggestions
of Bohr, Mottelson and Pines and the exploratory work of Belyaev [2, 3]. The first
application is to even number semi-magic nuclei, where the ground states are con-
sidered to be constructed by pairing configurations. This model is a useful tool to
explain a large variety of nuclear properties (4, 5]. The best known form of this theory
is obtained by means of the Bogoliubov transformation and Ritz variational princi-
ple [4, 5, 6, 7]. The BCS is an independent quasiparticle theory and its ground state
is the quasiparticle vacuum. The disadvantage of BCS is that particle number is not

conserved.

The application of the BCS theory to a proton-neutron (pn) system, i.e., open pro-
ton and neutron shells, is more complicated because we have two types of interacting
particles. Of course, these particles can been rewritten as the identjcal particles if
another quantum number—isospin— is introduced. But we will not use isospin for-
malism here because it is usually applied in heavj nuclei with a large neutron excess

where the pn formalism is more appropriate.

Several theories were suggested in order to describe pn system. The simplest
method provides separate Bogoliubov transformations for protons and neutrons, re-
spectively. Thus the quasiprotons and quasineutrons are well defined, and the ground
state is the vacuum corresponding to both types of quasiparticles. In this formal-
ism, the BCS equations for protons and neutrons retain the same form as those

obtained from the semi-magic nuclei case, and they are just coupled through the
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mean field (7, 17]. In this model, only pp— and nn— pairing are taken into account.
Another formulation that has been proposed by Lane [6] and considered by a number
of authors(7, 12, 13] is to give up the distinction between the protons and neutrons
by using a generalized Bogoliubov transformation that mixes protons and neutrons
to obtain two kinds of new mixed quasiparticles. The BCS types of equations can
be derived. They include all kinds of pairing, i.e. pp—, nn— and pn— pairing, where

complex mean field and potentials are required [13].

In this paper, we concentrate on the first method because well defined quasiprotons
and quasineutrons are necessary when one develops proton-neutron QRPA theory |8,
9, 10, 11]. In section 2, we re-derive the BCS equation in angular momentum coupling
space for the proton-neutron system. The correlated BCS wave function is introduced

through perturbation theory in section 3. The summary is given in section 4.

2 BCS Theory for Proton-Neutron System

2.1 Nuclear Hamiltonian in quasiparticle Space

In the shell-model basis, the nuclear Hamiltonian can be written in the J-scheme

coupling proton-neutron formalism, which is given by [14]
H = Esg\/2j, + l(a;' ® ) =oM=0 E & /2jn +1(a} ® &, ) =0M=0
P n

1
+Z z: (1 + 6?1?2)(1 + 6?3?4)‘/1){1)31)3))‘ A;p(plph JM)APP(p:ip4, JM)

P1:Ps
IM

1
+Z Z (1 + 8y )(1 + anam)"’n{mnsn. Al (ning, JM)Ann(nang, JM)

ny,ng
M

+ Z Vzﬂ{nznnaA;n(Plnlg JM)Am(mnzaJM), (1)

nnipang
JM



where the labels p/n stand for the proton/neutron single-particle state (nlj). €3 (3)
is the single-proton (neutron) energy. V7 VI = and V. . ipan, 2T€ the matrix

elements of two-proton, two-neutron and proton-neutron interaction, respectively.

The two-proton, two-neutron and proton-neutron creation operators are defined by

< Jpy M, Jpa Mgy [T M >
Al (pipr, JM) = 3 mominm @} oy, G, (2)
Mp; Mpy \/l + 6?192
< NyMp, Ny, | JM >
AIm(ﬂ.l‘ng, JM) = 2 "‘1 ~ 6"2 allmul amm“2 (3)
Mny Mng ning
AIm(PlnliJM) = z < jlePIjﬂlmﬂllJM > a;lmn aﬂlmnl’ (4)
Mplm"l

where at is the particle creation operator.

The quasiprotons and quasineutrons are introduced by the Bogoliubov transfor-

mations, in the spherical shell-model basis,

c:”“r = uPa:mp + (_I)jrl-mpvl’a?-mp’ (5)
c:mu = uﬂa:m,. + (—I)j“+m" Unlnom,, (6)

with
wvtvi=ul 402 =1, (7)
Eq. (7) is required if the quasiparticles are assumed to be fermions(7, 4, 5).

In order to derive the BCS equation, we relax the fixed proton and neutron number

restriction and introduce the extra terms to the Hamiltonian.
H=H-)\N,- )N, (8)

where N, and N, are proton and neutron number operators. The Lagrange multipliers

Ar and A, turn out to have the physical interpretation of proton and neutron Fermi
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energies. They are chosen to ensure that mean proton and neutron numbers are

correct,

After carrying out the Bogoliubov transformation, the Hamiltonian can be rewrit-

ten as
H = Hypcs + Hi, (9)
where
Hpecs = Ho+ Hif + Hip + (HEE + h.c) + (HE + h.c), (10)
Hw = HES + Hpnw + HE:, (11)

where the numerical subscripts indicate the number of quasiparticle creation and
annihilation operators in each piece of the Hamiltonian. We also require that the
above equations should be normal ordered, that is, destruction operators ¢ stand to

the right of creation operators ¢'.
2.2 BCS equations ( indep'endent quasiparticle )

The BCS equations only depend on Hgcs in Eq. (10). The terms in Hpcs are given
by

} 1
Hy, = Z(sz + 1)(53’ - Ar — %rp)”: + Z(an +1){en = A, - irn)”:
r : n

1 . 1 .
. L4 "
HY = 2 {(e, - '\w)(“: - ”:) + zquPAP}c;mpchw (13)
pmp
Hil{l = Z ‘[(\.‘:,,i — Ay)(u?‘ - 'U:) + 2unvnAn}cI‘mncnm,” (14)
- 1
HE = Y (1) *{(€p — Ar)upvp — E(u;‘; - vg)A,}c;mpc;_mp, (15)
p
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Hg = Y (-1"*™{(en —A)unvn—-(u — v3)An}chm, (16)
with
Ep = €g+rp’ (17)
en = o +T,, (18)
I, = 2Jp+1[2(1+6”')(2j+1) p,fo,.P,,,+’ZJ(2J+1 vaVireowl,  (19)
T, = o [EJ(I+6M.)(2J+1) LV, n,,,4-2“1(2J+1 vVl (20)
n' 7,
23 +1
A, = —Z 2 +1u,,rv,,:Vm,,,., (21)
A, = =Y 2J“Iiu":v,,nVM,n:, (22)

[y and T', the are proton and neutron single-particle energy rearrangements. A, and
Qn are proton and neutron gaps. The r.h.s. of the gap equations ( Eq. (21,22))
only depend on J=0 interaction matrix elements. The J # 0 terms are automatically
equal to zero due to Clebsch-Gordan coefficient coupling. So the BCS is an S-pair
theory. Also one finds only pp— or nn— paring is involved in the proton or neutron

gap equation.

In order to derive the BCS equations, we will drop quasiparticle interaction terms
Hine, and let the BCS ground state be the vacuum corresponding to quasiprotons and

quasineutrons introduced in Eqgs. (5,6), i.e.,

cm,[BCS > = 0, (23)

tnma |BCS > = 0, (24)

where |BCS > is the BCS ground state.



The BCS equations can be obtained from the Ritz variation principle, in which
the expectation value of A is minimized [7, 5, 17]. It requires the coefficients of HEP

and H3g in Egs. (15,16) to be equal to zero, i.e.,

1
(ep — Ar)UpUp — 5(",3 - ”:)Ap =0, (25)

(6n = A\ )tinvn — %(u: ~ A, = 0. (26)

We introduce the quasiproton and quasineutron energies defined by

E, \/(51! =M+ AL (27)

E. = \/(en—\)? + A2 (28)

Then one solves Eqs. (25,26,7) and obtains

1 Ep— A

2 - (1" 4n

vp 2(1 Ep )1 (29)
1 En — A

2 o LRty

o= 5=, (30)

We reiterate that the BCS theory ceases to conserve particle numbers. The BCS
wave function is required to have correct mean particle numbers. Thus the proton and
neutron Fermi energies A\, and A, are chosen so that the mean proton and neutron

numbers in the BCS satisfy

<BCS|N,[BCS > = Y (2j,+ 1) = N, (31)
P
<BCS|N,IBCS > = Y (2ju+1)2 =N, (32)

where N, and N, are the proton and neutron numbers in the nuclear system. At this
stage, the parameters v} and v? introduced in Bogoliubov transformations turn out

to have the physical meaning of proton and neutron occupation probabilities.
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Eqs. (17-22,27-30,31,32) are called the BCS equations. They can be solved iter-
atively. In the BCS equations, we find that the equations for protons and neutrons
are coupled only through the proton-neutron interaction terms in the rearrangement
I, and T'y. Since the BCS equation is obtained by dropping quasiparticle interaction

Hine terms, the BCS is an independent quasiparticle theory.

When v} and ] satisfy Eqs. (29,30), the BCS Hamiltonian in Eq. (10) becomes

Hpos = Hy + E EpC;m,Cpmp + E Encim,.cnmw (33)

pyMp n,Mnp

The BCS ground state energy is given by

Escs = < BCS|Hpos + AN, + A, N,|BCS >

= Ho + Aquqr + AVNU

. 1 _ 1
= 3 (2p+ 1)(ep - 51‘,,)1;; + 3 (2in + )(en — §I‘,.)uf,

P
1 : 1 .
) 2(2.7:» + 1)8pupv, — 5 2(2.?11 + 1) Antinvy. (34)
P n
The BCS excitations are constructed by
hod
|hgplqn >= HHC;..,,,,‘ CI;,-m,.. IBCS > . (35)
i !
The excitation energy is
h !
Ehapin = Epcs + 3 Epi + 3 En,. (36)
¢ J

The configuration corresponding to this excitation is obtained by creating h quasipro-

tons and / quasineutrons with respect to the ground state [BCS >.



3 Correlated BCS Theory

3.1 Interactions between quasiparticles

As we mentioned before, the Hj,, term describes the interactions between the quasi-

articles, consisting of like particle interaction HP® and H™ and unlike particle in-
p S int nt

teraction Hf;. Since HEY is identical with HP? if p/n labels are interchan ed, we will
int int int g

give HEZ here. Now the expressions of each term in Hi,, are given by

HEY = HYF + (HEP + h.c) + (HE + h.c) (37)
HEV = HY + (HR + h.c) + (P + h.c)

+(N3' + h.c) + PR} + NIy, (38)

where the numerical subscripts again indicate the number of quasiparticle creation

and annihilation operators in each piece of Hip,.

PP
Hyg

PP
H k)1

PR
H, 40

1

_Z Z (1 + 5?1132)(1 + 6?3?4)“?1“?2”?3”?4 V;{pgpa]u
P}""j":g,
Alo (102, TM) AL (p3ps, JM), (39)
1 : .
_5 Z (1 + 6?1?2)(1 + 6?3?4 )‘/p{pzpap‘
m;ﬂ;.
(Upy Upylpy Vp, — "m.”m”m "m)A;p(PlPZa JM )ﬁ;p(PsPh JM), (40)

1
1 Z {1+ b1 )(1 + Spam)(“m“mum“m + ”mvmvpa”m)vp':pgpap.

Py
Pt

+4“m”m"ps”mw;;{pgp,p. \/(1 + pipa (1 + 8p0p, ) (1 + Spips ) (1 + 6pp, ) }
A';p(plpﬁvJM)A;p(paphJM): (41)

- 2 Vp{mmm Upy Un,y Upy ”ﬂz_'Altm(Plnh JM)A‘;n(P2n2, JM), (42)

PRI PINY,
I}M"ﬁ



pn
P, i

PR
N; 31

pn
Hy

pn
P, 22

PR
N3

il

-

- 2 VP{MP:'M {upl Uny Vp,y U, A;n(PInl ’ ']M)‘P;tn(fhnz, JM)

F;“}ﬁ%n

V5, Uy Up, vﬂz"i;n(plnl! JM)ﬁ;n(Pznz, JM)},

- 2 Vp{nwzm {"m Upy Up, Un, AIm(Plnl , JM)-/\QD(Pznz, JM)

11 ”}B"ﬂ:
+Vp, Un, “munzj;n(l’lnla JM )J\'fgn(pznz, JM)},

J
E {(“mum Upy Ung + Vp, Un, ”m”nz)vpmimn,
Pl".llﬁ“zl

J
+(tip, Vn, Upa Uny + Up, U, Up, Un, )Wmn;mng}

'A;n(Pl‘nla JM)'APn(mnh JM)’

- 2 v;{nman"Plvﬂivm“mﬁgn(f’lnhJM)'P;n(pgnz,JM),

T
I

- Z V:;:ﬂwznz Upy Un, Up, ”ngﬂgn(}"l n, JM)NJn(pgng, JM).

PinLIPINg,
M

The notations used in the above equations are defined by

with

< Iy MpyJpy M |[JM >

ATPP(plpz’ JM) = Z Pimp c;zmpz '
. MpyMp, J]' + 6?1?2
DPP(Plp?, JM) = E < jm mmjm Mp, 'JM >c;1m,, Emmpg ’
mle“
Ala(pin, JM) = Y < Gy juyma, |IM > c;xmm Chimay
mplm..l

Pen{pr1n1, JM) = Z < Jp1Mpy oy Moy [T M > é';tnm,lcnnrnnl’

an(plﬂq, JM)

m"l Miny

2 < jmmmjnl My, |JM > E"rrum,“ cmm,,l ?

Mpy Miny

A(j]]Q,JM) = (At(jlthM))t)
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A(jjn IM) = (=1)"*MA(j1j3, J - M), (54)

WY is particle-hole interaction defined by the Pandya transformation,

Jf

P JIn

L o Jn '
Wp{np’n’ = —(_1)"’+J"+J"+J"' ;(2-] 4 1) { j’: j-r } Vp{t’,p’w (55)

3.2 Correlated BCS wave function

Since the quasiparticle interaction term Hi, is dropped in the BCS, we can incorpo-
rate its effects approximately by using it to improve our lowest-order results with the
Rayleigh-Schrédinger perturbation theory [15, 16]. The first-order correction terms
are rather easily evaluated if we are only interested in the BCS ground state. Ha, é.nd
Hj; both contain an annihilation operator ¢ as the rightmost operator and hence give
zero when operating on the BCS ground state (quasiparticle vacuum). This means
that, in this order, the corrections mix the four quasiparticle excitations with the

quasiparticle vacuum via Hyg.

Since Hyo consists of three terms HJY, HE and HE®, the quasiparticle excita-
tions connected to the ground state corrections contains three kinds of configura-
tion, four-quasiproton, four-quasineutron and‘ two-quasiproton two-quasineutron ex-
citations. They are denoted as [4qp >, |[4qn > and [2qpn >, and corresponding to
(h=4,1=0),(h=0,l=4)and (h=2,1= 2) in Eq. (35), respectively. Therefore
excitation energies are given by Eq. (36). The correlated BCS g-round state wave

function can be represented as

< k| Hige[BCS >
k>
Epcs — E; lk>)

ICBCS > = WN(|BCS>+
k

< 4qp|H{FIBCS >
Epcs — Eypp

N(|BCS > +Y |[4qp >
4qp
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< 4qn|H3|BCS >
+
E, Escs — By

[4qn >

< 2qpn|H{;|BCS >

+ 2qpn >), 56
T S e o >) (56)
where A is the normalization factor, and |k > denotes any excitations. However, this
correction is expected to be small so that the gap properties of the pairing solution

are not destroyed.

In order to simplify our calculation, the interactions between like particle are

assumed to be relatively small and dropped. Thus Eq. (56) becomes

pn
ICBCS >~ N(JBCS > + ¥ S 24l A [BCS >
29pn Epcs — E?qpn

|2qpn >). (57)

The word correlated implies including the quasiparticle correlation terms in Eqgs.

(56,57).

3.3 Construction of two-quasiproton two-quasineutron ex-
citations in the J-scheme

The two-proton and two-neutron doublet excitations |2qpn > are simply obtained by
choosing h = I = 2 in Eq. (35) in the m-scheme, where one normalized factor may
be introduced. But if we are only interested in some special J values, the J-scheme
representation is useful because of rather smaller dimensions involved. For example,
only J=1 excitations are needed in Gamow-Teller transitions. Thus we define a two-

quasiproton two-quasineutron doublet creation operator in the J-scheme,

B}!JH (lepznz, JM) = NB(Af(Plnl: J'M') ® Af(p?ni‘a J”M”))JM

= Ns ¥ <JIMJI'M"IM >
MIMM

x Al(prna, I'M') Al (pgns, J" M), (58)
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where Np is the normalization factor of B*. The two-quasiproton two-quasineutron

excitations are given by
|2qpn >= BY, u(p1rypans, JM)IBCS > . (59)
However, when one constructs the |2qpn > excitations, identical states must be ex-

cluded in order to avoid double counting.

The normalization factor N is determined by

< 2qpn|2qpn > = < BCS|By(pynipang, JM)BL, . (pinypons, JM)|BCS >

= 1. (60)

Then we obtain,

, . I jﬂ1 J'
NGt = 1+(---1)Jvn'Hﬂz’f“'(zJ+1)(2J’+1)(2J”+1)6,,1,,,{jﬂ2 . J"}
Jﬂ' JI J

. . Iny jPl J’
+(_1)Jp1+JP2+J(2J+ 1)(2.}’ + 1)(2JH+ 1)6,;1,1, { jpz jﬂe J! }
JJroJ

+6JlJH6le6ﬂ1nz; (61)

Since the BCS ground state has spin J = 0, only J = 0 two-quasiproton two-
quasineutron excitations in Eq. (59) contribute to the ground state correction. There-
fore we have J' = J” and M’ = —M". Then two-quasiproton two-quasineutron

excitations used in the correlated BCS wave function are restricted to

2gpn > = NBB},J.(p,nlpzng,OO)IBCS>

'I(Pznl)J'(Pznz)J'_ >. (62)

The last notation will be frequently used in later discussions.
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According to perturbation theory, all unperburbed states involved in Eq. (57)

must form an orthogonal basis. But the excitations created by Eq. (59) or (62) are

not orthogonal each other. Let’s consider any two states,

k> = |2qpn >= NpB},(pinpanz, 00)|BCS > | (63)

k> = |2qpn’ >= Ng.Bl, ;. (p\n,psn}, 00)|BCS > . (64)

The orthogonal condition requires < k|k’ >= §i... But the overlap between them is

Xkkt

< BCS|Bys(p1n1pzna, 00) BY, 1.(p}n' pyn’, 00)|BCS >

NpNp: {‘Sm:{ Onyn Opapy Onany .1

o in m T
+(_1)J"' A hakd (2J + 1)(2'] "+ 1) g Jon J 6?1?5 ning 6?2?‘, 6,,.‘.,.5
JJ 0
. . ’ jﬂl jm J
+(_1)’" AR i (2J + 1)(2J‘r + 1) jm jna J 6?1?{ 6n1n;6mp55nzn’1
JJ 0
+6m’5 '51!1115 6?:?3 6mn’, Sar } ’ (65)

where Np and Np: are the normalization factors for states l2gpn > and |2qpn’ >.

The X is nonzero only for the following cases,

A p=pimi=nip=pyny=nfJ=J
B)p=ppmi=nip=p,na=nJ=J
Clp=pyni=n p=p| ny=ny J, J'

(D) pr = pj m=nypp=pyny=n,J J.

For case (A) or (B), it is easy to obtain x = 1. It indicates that states |2qpn > and

|2gpn’ > are identical. On the other hand, we can exclude all double counted |2gpn >
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states through this overlap procedure. For cases (C) and (D), 0 < x < 1 implies that

two states are not orthogonal.

We have to use the Gram-Schmidt orthogonalization procedure to obtain normal-
ized orthogonal states from the normalized nonorthogonal states I2gpn > ( in fact,

they are not linearly independent ). Finally, we obtain

|P1napang, k >= Za;k!(plnl)"‘ (pang)” > . (66)

The coefficients « are obtained from orthogonalization which relate to x. For the new

state |pynypang, k >, we have

< prny pena, k|p1n1p2n2, K >= 6kki. (67)

These states will be employed to calculate the first-order perturbation.

The excitation energy for state [pynypny, k > is given by
Ey = (Egcs + By, + E,, + E,, + E,,). (68)
So the energy denominator in Eq. (57) is
Epcs — Ey = —(E,, + E,, + E,, + E.,). (69)
3.4 Occupations in the correlated BCS

Based on the discussions in the last subsection, we can start to derive a formalism for
the occupation probabilities in the correlated BCS theory. In this subsection, we will
derive the correlated BCS wave function expression and occupation probability. One

inserts [pinpansg, k > into Eq. (57) instead of |2qpn >, the correction terms become

< 2qpn|H};|BCS >
2q9pn EBCS - Eﬂqpn

12qpn >
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< pinypang, k| HPYBCS >
- _ E }-’1_"91 1P2E2, |E40| = |p1n1pgn2,k>
Pl“l{?"ﬁ P1 + w1 + P2 + L) :

_ E Y axi < BCS|Bj,s.{p1nipang, 00)Hiy |BCS >
P1RPany E, +E. +E,, + E,,

Xy aij}J.JJ_ (p1r1pang, 00)|BCS >
i

2k i akicj < BCS|Bj, 5 (pinipan,, 00) HERBCS >

B Pt "1:?2"2 Em + Eﬂ: + EP: + EM
x B}, ;. (p1napana, 00)|BCS > , (70)

where the matrix element in above equation is

< BCS|By,5,(p1n1pana, 00) Hiy |BCS >= -Npiyf2J; + IG:;',“”M, (71)
with
G::ﬂlpgﬂq = ‘/p‘:':nlpgnn(ui’l Un; Upy Uny + Up, Un, umunz)

J.
- Wp;ﬂl pang (”m Un, Upy Ung + Upy Un; Upy Un, ) . (72)

The matrix elements V and W are the particle-particle and particle-hole interaction,

resepctively. Therefore the correlated BCS wave function in Eq. (57) is given by

F,
CBCS >= N {1 Pin1p3ng B . ,00)}|BCS >, (73
OB > N 2 B ¥ B + B 7 B, D (amapans, 0O)}BCS >, (73

where
Foinipany = ; 3 Npiowion; /24 +1GE, . (74)
One finds F is a function of j where k and i are already summed over.
The occupation probabilities for the protons and neutrons are given by

< CBCS|a},, am,/CBCS > = o2+
16



(ug _ ‘Ug) E ( Fmﬂlpﬂz )2 (75)
2jP + 1 PRI ng EP] + Eﬂz + EP + Eﬂz ’

< CBCS|al,,, dnm.[CBCS > = o2 +

( - mn:pan 2
,(76
T ,,,%,l(E ¥ En + B, 75, {0

where E, u? and v? are given in the last section.

The correlated BCS wave function is required to have correct mean proton and

neutron numbers, and we have

< CBCS|N,|CBCS > = N, (77)
< CBCS|N,|[CBCS> = N, (78)

Eqs. (17-22,27-30,75,76) are called the correlated BCS equations. They can be solved
iteratively. We point out that parameters v2 and v} have lost the physical interpre-

tations of occupation probabilities, because of the existing additional terms in Eq.

(75,76).
Since the BCS theory violates the particle number conservation, the constructed

BCS excitations in Eq. (59) include some spurious states [11]. But they have not been

projected out, because we believe that they are not very important in our calculations.

4 Applications

We apply the correlated BCS theory to study the ground state properties of %Tj in
the full 0f1p shell, where there are two protons and four neutrons. The occupation
probabilities and the quasiparticle energies are calculated from the correlated BCS
equation Eqs. (17-22,27-30,75,76). They are solved iteratively by constraining the

mean proton and neutron numbers to be 2 and 4, respectively. The effective two-
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body interaction used here is the MSOBEP [18], which is a recently derived effective

interaction within the 0f1p shell in the range mass 40 ~ 50.

The occupation probabilities obtained from the correlated BCS are given in Ta-
ble 1 and compared to the BCS and the large-basis shell-model calculations. The
shell-model calculations are carried out by OXBASH code [19]. We find the corre-
lated BCS calculation improves upon the BCS occupation numbers, bring them more
in line with the large-basis shell-model result, but there are still some differences in
these models. The disagreements may be from the some perturbation terms which
are not included in our calculation, or from the BCS approximation itself which may
not be very good basis. For example, d-pairs (J* = 2+) which play an important role

in nuclear structure have not been taken into account in the BCS.

The correlated BCS parameters are presented in Table 2. We find that v? are
not equal to the relevant occupation probabilities given in Table 1. In the correlated
BCS, the Fermi level of proton and neutron are —13.216 MeV and —10.942 MeV,
comparing to —12.968 MeV and ~10.868 MeV in the BCS.

5 Summary

In this paper, we re-derived the BCS equations for proton-neutron systems in an
angular momentum coupling space. The correlated BCS (CBCS) wave function is
introduced through the first-order perturbation theory. The quasiparticle interactions
Hine dropped in the BCS theory are considered as the perturbation Hamiltonian and
incorporated approximately. In order to simplify our calculations, we only consider
the proton-neutron interaction term in Hi, which is believed to be more important

than the like particle interactions. The formalism for the occupation probabilities
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Table 1: “®Ti: The occupation probabilities < |a}ma,-m| > for protons and neutrons
. obtained from the BCS, correlated BCS (CBCS) and shell-model calculations, respec-
tively.

level | BCS CBCS Shell model
wlrg | 0,239  0.222 0.187
sy, [0.008 0.020  0.022
Tpyz | 0.004 0.008  0.031

I/f7/2 0480 0.459 0.404
vpasz | 0.018  0.036 0.092
v, | 0013 0.027  0.054

YPij2 0.007 0.011 0.040

Table 2: The correlated BCS parameters, u?, v?, gap parameters A, (MeV) and
quasiparticle energies E; (MeV) for 46T}

level uE vi- A E

wf7;p 1 0.817 0.183 1.203 1.556
TPpasg [ 0.992 0.008 0911 5.105 |
wfsse | 0.993 0.007 1.314 7.592
Tpiyz | 0.996 0.004 0.874 7.275

vl | 0.546 0454 1447 1.453
vpasa | 0.983 0.017 1.104 4.236
s | 0.987 0.013 1.574 7.076

vPyyz [ 0.993 0.007 1.069 6.478
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in the CBCS is derived. The two-quasiproton two-quasineutron doublet excitations
in the CBCS are introduced and discussed in the J-scheme. Since the excitations
may be not orthogonal to each other, the Gram-Schmidt orthogonalization method

is employed to obtain a new orthogonal basis.

We applied the CBCS theory to the study of the ground state properties of “6Tj
within the 0f1p shell and found that the the occupation probabilities have been
improved compared to the standard BCS, but not enough to reproduce the shell-

model results.

Acknowledgements: This work was supported by the National Science Foundation

under Grants No. PHY-9017077.

20



References

[1] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, (1957), 1175.
[2] A. Bohr, B.R. Mottelson and D. Pines, Phys. Rev. 110, (1958), 936.
[3] S.T. Belyaev, Mat. Fys. Medd. Dan. Vid. Selsk. 31, (1959) no. 11.

[4] R.D. Lawson, Theory of the Nuclear Shell Model, Clarendon Press, Oxford,
(1980).

[5] P. Ring and P. Schuck, The Nuclear Many-Body Problem , Springer-Verlag,
New York, (1980).

[6] A.M. Lane, Nuclear Theory, Benjamin, New York, 1964.

[7] D.J. Rowe, Nuclear Collective Motion, Methuen, London, (1970).

[8] D. Cha, Phys. Rev.C27, (1983), 2269.

[9] J. Engel, P. Vogel and M.R. Zirnbauer, Phys. Rev. C37, (1988), 731.
[10] B. Lauritzen, Nucl. Phys. A489, (1988), 237.

[11] L. Zhao, Ph. D. thesis, Michigan State University, Nuclear Models for beta
-and double-beta decays, 1992.

(12} A.L. Goodman, G.L. Struble, J. Bar-Touv and A. Goswami, Phys. Rew. C2,
(1970), 380. '

[13) A.L. Goodman, Adv. Nucl. Phys. 11, (1979), 263.

[14] P.J. Brussaard and P.W.M. Glaudemans, Shell Model Applications in Nuclear

Spectroscopy, North-Holland, Amsterdam, 1977.
21



[15] M. Rho, Nucl. Physc. 85 (1965), 497.

[16] D.S. Koltun and J.M. Eisenberg, Quantum Mechanics of Many Degrees of
Freedom, John Wiley & Sons, Inc., 1988.

(17] L. Zhao and A. Sustich, Ann. Phys., 213, (1992), 378.

[18] W.A. Richter, M.G.V.D. Merwe, R.E. Julies and B.A. Brown, Nucl. Phys.
AB523, (1991), 325.

[19] A. Etchegoyen, W.D.M. Rae, N.S. Godwin, W.A. Richter, C.H. Zimmer-
man, B.A. Brwon, W.E. Ormand and J.S. Winfield, MSU-NSCL report #524
(1985). |

22



