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Abstract:

wthin a l|ocal phase space structure distinguished

The symmetry breaking ground states are naturally

| ow energy quantum dynam cs. This Structure is constructed

explicitly for the case of the nuclear defornmed

states and a single angle coordinate. As application,

presented a semclassical treatment  of t he

I sovector angle vibrations which | ead

excitation operator.

PACS numbers: 03.65.8q,;21.60.Ev.;21.60.Jz,

to a boson-Ilike



The study of the phase portrait in Hilbert space for Hamiltonian
quantum dynamical systems is faced with considerable difficulties,
and initially the attention was concentrated on the stationary
states. However, for the realistic many body systems encountered in
chemistry, nuclear or condensed matter physics even the ground  state
cannot be found exactly, and approximate solutions are obtained
constraining the quantum dynamics from the Hilbert space ¥ to some

finite dimensional trial manifold M. This is usually a symplectic
. M \ M . . .
manifold (M,& ), with @& defined naturally restricting from ¥ to M

® 2 o
th lectic f W € ¥y , ©w (X,¥)= 2Im<X_ JY. >, X , YT ¥ ,[1].
e symplectic form (9) w( ) m Wl v v S Ty {1}

If the constrained dynamics has an unique critical point of minimum

energy, than it is invariant  to the symmetry group R of the

Hamiltonian operator H and it approximates the ground state.But often

this is not the case, because the variational equation 6hu=0. hM(Z}=

<Z|ﬁ|Z>, |Z>€M, may have a solution |g> which is not invariant to the
action of R. As important examples may be mentioned the deformed
nuclear ground states obtained by Hartree-Fock calculations, or the
BCS superfluid states. These are not invariant to the action of the
rotation group S0{3,R}, respectively of the "gauge" group uit)
generated by the particle nﬁmber operator. The low-lying spectra show
in these cases a simple struéture, described in terms of a small
number of so called collective degrees of freedom. But the connection
between the original quantum dynamics and the collective behaviour
remained  a challenging problem of the many body theory.

The purpuse of this letter is to present the collective dynamics as a
special case of low-energy quantum dynamics, occuring when the
quantum ground state break a continous symmetry of the Hamiltonian.
This situation appears usually'for the approximate ground states, but

may also be expected for the exact ones , at the classical limit.



Consider R to be a connected Lie group represented in ¥ by the

unitary operators H%,rER}, and MS¥ an R-invariant trial manifold.If

|g>EM is a symmetry breaking ground state, than a whole critical

submanifold Q<M ,Q={Gr|g>,reﬂ} can be generated by the action of R on
|g>.'

Suppose that wu vanishes on the tangent space TQ, namely @ is an
isotropic submanifold of M. When the algebra r of R is semisimple,
this means that the representation operators for r have vanishing

ground state expected values. In particular, for the deformed ground

~ ~ -~

states the average of the angular momentum operators Lx'Ly’Lz should
be zero, and the isotropic submanifold Q appears as the coordinate
space for the rotational "collective" degrees of freedom.

If @ is isotropic; than at any q€Q the tangent space TqQ has a
. . M . M
coisotropic W -orthogonal compliement Fq defined by Fq={X€TqM|m {X,Y})=

0 for alil YETqQ} »[2], and the quotient qu Fq/TqQ iz a symplectic
vector space. Consider Pq to be a complement of Fq y that is

TqM=Pq$Fq.Than Pq is isotropic, with the same dimension as TqQ, and

such that mu regstricted to quTqQ is nondegenerate. Thus locally, at
every point q of Q one has a classical phase space structure, with P
representing the spacé of the momenta canocnically conjugate to the
collective coordinates., The remaining "intrinsic" variables\ are
represented within Eq. However, this local phase space structure is
not unique, and in general it cannot be integrated to a classical
phase space manifold.

At this point dynamical considerations may start to play an
important role, eliminating the ambiguities and selecting an
integrable structure. To get insight into this role of the dynamics
it is instructive to study the non-trivial case of the canonical

momentum associated to a single angle coordinate ¢ .



Consider ¢ to be the rotation angle around the X-axis, I the
associated momentum coordinate, and |g> a deformed ground state.
Suppose that exists a symplectic submanifold F containing

|g>, parameterized by ¢ and I, such that F={|Z>

Z>
! (p,1) (0,1}’
to be canonically conjugate shows that generally |Z>

eMf [ Z> ={g>,

{(©,1) (0,0)"

=exp(-&pLx)|Z> pe[0,2n] ,I<R}. The condition as p and 1

tO'I).beiongs to

the manifold ?I=Jﬂ(11 with J:M— R, J(Z}= <Z|LXIZ>. Denoting‘?lﬂf by

.?r than fOEQ and at any |Z>€fi the coisotropic complement of T|Z>f1
i ? L]
8T Ty

Due to the intrinsic variables, the dimension of ?1 is high, and the
definition of |Z>(0 I) y which fix the space Pq, requires additional
]

chriteria. Assuming that |Z> represent a state with no

(0,1}
"intrinsic" excitation , a first selection can be made retaining

only an absolute minimum for the restriction of hu to 3&. If this

minimum is wunique up to a rotation Rk=epr4¢L2), than a

representative joined smoothly with |g> will correspond to

|Z>(0 I)° This constrained variational problem reduces to a mnormal
3

~ ~

one for the modified Hamiltonian H =H - wLx. intensively used within

the self consistent cranking model of the nuclear rotation +[3).Thus,

~ _
denoting by |Z>m the minima of <Z|H {Z> and by W the value

> =|Z> .
(0,1 I (JJI

determined from I= w(Zle|Z>w, the result is |2

~

As it is known ,[3], if H is a nuclear Hamiltonian consisting of a
single-particle spherical oscillator term and a quadrupole-quadrupole
interaction, and M is the manifold of the Hértree~Fock states, than
|Z>w is a Slater determinant constructed with the cranked anisotropic
ogcillator eigenstates. These eigenstates have a simple expression,
and are connected with the spherical harmonic oscitlator

eigenfunctions by unitary transformations.



3

. + + i
Consider H = Ewk(akak+ z ) 08 = T‘mwk/2 (x, - v pk) ,to be the
k=1 : : k
. + i
deformed oscillator Hamiltonian,and denote by bszmwO/Z{xP- oy ﬁ,)
P o o

yk=1,3, the Dirac-Fock operatore for the spherical oscillator having

2 + +
w ={ + . i = —
o { . ws)IZ Than, the angular momentum operator is L L{bzb3 babz}

I3

. *® -
y and it can be shown that if w/w°<1%/z, than H =l-I--wLx=UH0U1 with :

R + + *2 2
U = exp[-Lk(bzba+ babz” expi E@k(bk - bk}/2 ] (1)
k=1
3
dH= TQ(bb+3

and T k Tk k 2'°

k=1
Here Qizo.)1 , while R,@k,ﬁz,ﬂs are explicitly related to the
"deformation"

2 2 2
parameter nz{wz-wgllzmo and the cranking frequency ®© by
the formulas:

2, 2 .
tanZK—Zw/(won) s sinhzﬁkuwo(l-wk/wol/ZQk +k=1,2,3 (2)
2 2 2
Qk-(wb+ak) m(mon) /4 ,k=2,3 (3)
k
ak-skwon/(200$2l),sk-(-1) yJk=2, 3. {4)

Now, if ca ,(c;), a=(%,0), creates yiannihilates), a fermion in

* 1
the orbital eigenstate 8 of H , with spin projection ¢=*— than for a

+ + +
syastem of N fermions,the state |Z>w=ca ca RN |0>, may be expressed

1 2 N
- ~~ .Y a Y
as |Z>w = Uw|HF>0, where: Uw= exp[—dd%]eprﬁ?iﬁksk/Z],-w1th:
" + + +
= < +
Cx bX ctlbzb9 bsbz[ﬁ>cacﬁ , {6)
o, f3
o +
s = <albi- b2 |prcte (6)
k k k afz
a,f3
+ + +
i 2 N



and ¥ eigenfunction of Ho.

~~

The action of S; shows easily that the transformations generated by

~

Sk correspond to the transition from a "spherical” to a "deformed"

basis. By construction, the operator Cx has the main role in

generating the shift of the angular momentum average, and thus it

~

appears as an "angle" operator conjugate to L%. However, by contrast
to the angle operators defined by the kinematic approach of the
commutation relations, [4],[5], its relevance is restricted to the

particular dynamics investigated here.

-~ -~ -~

Consider Cy,Cz to be the conjugate ope rators obtained when L ,
respectively Lz are used as cranking terms instead Lx' Then the sets

~

{ik,ék},{Lk,ék}, k=x,y,z geherate an su(3), resgpectively g1l(3) Lie
algebras. Both are subalgebras of the symplectic Lie algebra sp(3,[F)
intensively studied for the algebréic description of the collective
dynamics ,[6].

A simple, but suggestive application of the phase space F
constructed here concern the microscopic correspondent for the
clagsical isoveétor angle vibrations considered in many recent
studies on the nuclear magnetism v[7]. Therefore, the appropriate
excitation operator for the magnetic dipole states must be a
nonhermitian combination including both "coordinate" and “"momentum"
operators ,[8] ,and this is fixed only if Gw is known. Consider two
different submanifolds.?p, f; containing the proton, respectively the

nT‘l
(¢ , I
low energy nuclear angle vibration with frequency O mnay be

neutron functions: |Z>?¢p Ip)' |Z> n)> +Within this space, the
b ]

represented by the product IZ>pn{pﬁI?piIh)=|Z>T¢p.Ip,|Z>Tpn ™)

. 1] . . . .
with pp,p + time~dependent as given by:pfuz ap31n9t, p?uz —an31nﬂt.



For the first excited state the oscillation amplitudes ap.ah are

completely determined by the non-rotation condition Ip+Ih=0, and by
. . ‘ ‘pp 'n.n

the Bohr-Sommerfeld quantization formula $(p I +p I )dt=2m. 1ln

iy a . n . .
addition, if ap,a are small, the requantization procedure employed

before ,[9], give the associated stationary state by the time-average

-q -~
@ >=T $exp(@t)| 2> =" |gd>, with T=2n/Q, |gd>=|2>7"(0,0,0,0), and

h+ ~ r. . a~
B = d apr —anLn - wfgl-—-(apcp - ahcn ) (8)
2 X *® QE— ms 4 ®

~ ~

.'.
The presence of the C-dependent terms in B lead now to the boson-

" "4
like relation: <gd|[B ,B ]|gd> = 1 as required for the excitation
operators within the random phase approximation. If the particle-hole

excitations between different oscillator shells are neglected, than

lﬂ. ™ J\+ . ] .
sgn(n)thlgd)E—Lxlgd>,and B will be replaced by a hermitian operator.

-~

The same hermitian operator is obtained if the crank i ng term -wLx is

considered '

'small"” and |Z>w is estimated in the first order of the
perturbation expansion. After normalization the state IQK> reduces in
this last case to the term independent on spin and superfluidity from
the state |ROT> constructed previously .[10],. to represent the

microscopic correspondent for the collective angle vibration.

This example show clearly the importance of using the whole manifold

¥, rather than only the "coordinate space” @ generated by éx . Worth
noting is that although within a different algebraic framework, the
same approach was successfully applied to the case of the nuclear
isovector Josephson-like oscillations in the BCS gauge space ,[11].
Nevertheless, beside the cranking model or the angle vibrations , the

closed expression for Uw presented here may have a wide range of

applications
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