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Abstract: A technique is presented which alows rapid calculation of multi-
particle Bose-Eingtein interference to al orders for a finite system. This technique is
used to illustrate how multi-particle interference can enhance the emission of pions in
a heavy-ion collison. Corrections to multiplicity distributions, single-body spectra
and two-body correlations are demonstrated. The possibility of creating a pion laser
with the upcoming lead beam at CERN is discussed. The effects of symmetrization
regarding isospin fluctuations are demonstrated in the context of a smple model.
It is shown that these effects can play an important rolein explaining anomalous
(CENTAURO) cosmic ray events.

Ultrarelativistic hadronic and nuclear collisions provide the environment for cre-
ating dozens and in some cases hundreds of pions. Pions are bosons. Their bosonic
nature should affect the single-body spectrum. For example, the Planck distribution
of black-body radiation differs from the Boltzmann distribution. The two-body spec-
trum is aso affected in that the emission of two-pions with small relative momentum
Is enhanced, as is well documented with correlation measurements for both hadronic
and nuclear collisions. A laser is the most dramatic example of multi-particle sym-
metrization. The emission of bosons encourages the emission of more bosons, and if
the particle density is sufficiently high, al sources emit simultaneously in a coherent
fashion. Describing lasers requires understanding the full n-body symmetrization. We
present a solution to the n-body symmetrization problem, and discuss the conditions
for creating coherent behavior from incoherent sources.

For thermalized emission, multiparticle interference becomes important once the
mean particle separation approaches the thermal wavelength. This is the case for
high-multiplicity hadronic collisons and should be the case for relativistic heavy-ion
collisons with sufficient energy, projectile size and target size. Accounting for multi-
particle effects has proven difficult[1, 2]. The usual method isto ‘Monte Carlo’ events,
then calcul ate the symmetrization weight for the event by squaring the symmetrized
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wave-function. This is numerically challenging because the weight approaches N! as
all N momenta become equal. We present a technique for calculating the many-
body effects for an arbitrary emission function S(p,z). For the case of gaussian
emission probabilities, analytic results are obtained. For more complicated emission
distributions, results can be obtained in a few minutes of Monte Carlo, as opposed
to a few days which was the case with other methods. To illustrate these effects we
show the correction to the one-body spectra, the two-body correlation and to the
multiplicity distribution for simple gaussian geometries.

A high energy cosmic ray might produce a hundred particles in a volume of only
a few cubic fermi. We show how multi-boson effects enhance high multiplicity events,
and in a simple model, we illustrate how fluctuations in the isospin assymetry are
greatly enhanced for very high multiplicity events. Previously unexplained fluctua-
tions have been observed in emulsion, and are known as CENTAURO events[3].

For emission from uncorrelated chaotic sources, we assume that the T-matrices
factorize. The matrix element for uncorrelated sources to emit N pions with momenta
pi is:

j d4m1d4x;...d4$NT1(m1)T2(x2)...TN(zN)U(xl, T2y e LN} P1, P2y --PN) (1)

The evolution matrix, U, has N! terms. Before we show the result of squaring the
entire matrix element, we first look at the the result of squaring U(z;; p;). Ignoring
the permutations over spatial-coordinate labels there are N! termsin JU|2. For N = 4,
the terms are as follows:
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The factors in front of each term represent the number of similar terms which
differ only through permuting the momenta indices.

To calculate a probability one must square the entire matrix element in equation
1. Since the coordinates z; are integrated over, this brings about terms such as
T*(x) - T(2"). We use the T-matrices to define an emission function S(p,z) which is
defined:



S(p,z) o 3 / d'ye? VT (z + y/2)Ti(z — y/2). (3)

When evaluated at po = E,, S(p,z) is the probability that an emitted particle
has momentum p and originated from space-time point z, assuming symmetrization
has been neglected. The emission function can be extracted from any dynamical or
hydrodynamic simulation that theoretically describes the emission of pions. Perform-
ing the combinatorics and the algebra one can show that the probability of emitting
4 pions is:

w(t) = 5 [OM)* + 50Q) - 0@)

4!
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Here, Z is the normalization, Z = ¥, w(z). To explain the quantities C(N) we write
C(4).
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We take the emission function to be normalized such that [ d*z2d®pS(p,z) =1. A

factor %= > has entered which entails assuming there are many more sources than pions,
and that their random emission would lead to a Poisson distribution with an average
multiplicity of # if symmetrization were neglected. This equation can be represented
with diagrams where C(n) is a ring diagram with n dots connected with n lines. Each
dot represents a spatial coordinate ; and each line represents a momenta k;. Then
G(p, q) can be considered a line formed by connecting n dots, where the incoming and
outgoing segments are labeled p and ¢, and all the unlabeled interior lines and dots
represent coordinates over which are integrated. The quantity w(n) is the sum of
all diagrams, connected or disconnected, of order n. The rules for prefactors are the
same as used in perturbation theory for particles interacting with an external field.

The corrected single and two-body spectra can also be calculated from these
diagrams. To calculate the single-body spectrum for events with fixed N one begms
with w(NV), the sum of all diagrams of order N, and then make one cut, in all
possible ways, labelling the cut segment, p. The probability of measuring a pion with
momentum p becomes:



P(p) = ;D-(IN—)[GI(p,p) (N =1) + Ga(p,p) - w(N — 2) + Gs(p,p) - w(V — 3) +...)(6)

The two-particle probability is the sum of all diagrams where there have been
two cuts. If we consider events with all numbers of pions, the single and two-particle
probabilities take on a particularly simple form.

P(p) = Gl(psp) + G;z(P,P) + G3(P$p) + ... (7)

Py(p,q) = [Gi(p, p) + Ga(p,p) + Ga(p,p) + ..] [Gi(q,9) + Ga(q,9) + Galg, ¢) + -]
+[Gi(p, 4} + G2(p, ) + Ga(p, q) + ...] [Gi(q, P) + G2(q, p) + Ga(g,p) + ]

It is straight forward to calculate all the quantities G.(p, ¢) and therefore C(n),
either through Monte-Carlo integrations or by analytically performing the integration
as can be done for the case of a Gaussian distribution. The missing piece is calculating
w(N) from C(n),n < N. Here we present the algorithm for finding the sum of all
possible diagrams of order N in terms of ring diagrams of order n. First we define
o(i,n) , the sum of all diagrams of order n made up of ring diagrams where no ring
diagram is of order greater than i. Once we have found (N, N) which equals w(N)
we have accomplished our mission. The sum of all direct diagrams o(1,n) is:

1

o(l,n) = n'

.oy 8)

Then we find o(z,n) for successively higher 3.

0(2,n) = o(1,n) + C(2) - o(1,n — 2) + §1~!c*(z)2 co(l,n—4) + %C(2)3 .o(L,n —6)...

o(3,n) = o(2,n) + C(3) - 0(2,n — 3) + %0(3)2 co(2,n—6) + ..

w(N) = o(N,N) =o(N - 1,N) + C(N)

1t is worthwhile to work with an example where G,,(p, ¢) can be found analytically.
This will allow rapid calculation so that physical consequences of the multi-particle
effects can be studied more readily. Such an example is a non-relativistic thermal
gaussian distribution.



S(p,z) = (27rR2n;lT)(3/2) . e“?-ﬁg - 8(z0) 9)

Successive convolutions over gaussians yield more gaussians, and the functions
G.(p, g) can be expressed as:

(_ﬂ"(p2 + qZ) ';' |p — Q|2R§.) (10)

The quantities «, p,, and R,, are found iteratively.

Gn(p,9) = a(n) - exp
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To demonstrate the effect of the symmetrization on the multiplicity distribution, we
consider a small system of size, B = 1.5 fm, and A = 250 MeV/c. This A would
yield a mean pr of 313 MeV/c, roughly corresponding to the mean pr of non-jet pions
in high energy collisions. We consider a distribution which if symmetrization were
neglected would be poissonian with a mean of § = 14. Figure 1 shows the multiplicity
distribution corrected for symmetrization according to the symmetrization weights
as in equation 4. The mean has increased from 14 to 31.3. The symmetrization
enhancement increases for higher multiplicity events. The variance of the distribution
has increased to make the distribution super-poissonian, meaning the variance has
become larger than the square root of the mean.

The increase of the mean depends on 5. For fewer particles, the effect of sym-
metrization is small. In figure 2, the resulting average multiplicity is shown as a
function of 7, the average multiplicity when symmetrization is ignored. This is done
for a source of size R = 3.5fm and A = 250M eV, reasonable sizes and momenta for
relativistic heavy-ion reactions. Symmetrization does not affect the multiplicity for
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small 7. But as 5 approaches a critical value, 122.2, the resulting average multiplicity
goes to infinity. This is because the sum of diagrams for the single-particle proba-
bility diverges, when 5 becomes large. We label this critical value 5.. By carefully
inspecting the form of G,,(p, p) for p = 0 at large n, one can see that the sum diverges

when 7 exceeds
1
n=((ARY +1/(moR)? + 7)1, (12)

The critical multiplicity 5. does not scale as R® until R is large. Figure 3 demonstrates
these finite-size effects. The critical density is plotted as a function of the radius B
for a fixed value of A. The critical density is the density at the origin when 75, pions
are distributed with a gaussian distribution characterized by R. For large R the
critical density approaches a constant, in this case .145 fm~2. For smaller sources
the required density is higher because 7, approaches a constant as R goes to zero. As
long as the source size is much larger than the thermal wave length, 1/A, the condition
for this discontinuity is that the phase space occupancy at the origin exceeds unity
when symmetrization is neglected.

Heavy-ion collisions at high energy create systems where the size of the excited
region is larger than the thermal wavelength. The number of possible pion emissions
also significantly exceeds the number of pions actually emitted. The assumption of
unconstrained Poissonian emission is therefore reasonable. The natural step is to
compare the estimated pion density that occurs in heavy ion collisions to the critical
density for large sources. The highest pion density currently achieved is with the
SPS at CERN using a 2004 - GeV sulphur beam incident on a fixed lead target.
Here roughly 100 like-charge pions are produced in a central collision. These pions
are distributed over roughly three units of rapidity. Pions emitted with a rapidity
difference greater than unity are usually from spatially disjoint regions of phase space.
Pions emitted from long-lived resonances do not contribute either. To make a crude
estimate of the pion density we consider one fourth of the pions to be emitted from a
static gaussian source of a size slightly larger than the sulphur nucleus. Dividing 25
pions into a volume described by a gaussian distribution of R = 2.5 fm, the resulting
7 density is .10 fm=3. This represents a significant fraction of the critical density.
The size of B = 2.5fm is small enough that finite size effects increase the critical
multiplicity such that 25 pions is exactly half the critical number. When the lead
beam at the SPS is available in 1994, the pion density should roughly double. The
larger source size will reduce finite-size effects as well. Critical multiplicity might
then be attained. Stimulated emission would then become unstable and nearly all
pion emission channels available should emit pions into low momentum states. Two
characteristics of such emission would be anomalous pion multiplicities and stopping.
We refer to such behavior as a pion laser. As we discuss the effects on single-body
and two-body measurements, the similarities to photon lasers will become clear.

Figure 4 shows the symmetrization-corrected single-pion probability divided by
the single-pion probability when symmetrization is neglected. The ratio is plotted
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against the pion’s momentum. We have used the same gaussian distributions with
R =3.5fm and A = 250MeV/c and have fixed the number of pions to 100, 200 and
400 for the three lines shown on the graph. The symmetrization brings about a low-py
enhancement. This is significant in the case of multiplicities of 100, but spectacular
for multiplicities of 200 and 400. A significant fraction of the pions are in the same
phase space-cell. The momentum of the cell is zero to within the inverse source radius.
In other words, the wavelength of the pion laser corresponds to zero momentum. In
analogy to liquid helium the zero momentum pions are in a condensate. One can
perform the same diagrammatic calculation for particles-in-a-box geometry that we
presented here for gaussian geometry. For large boxes, the correction to the single-
particle spectra can be shown to be precisely the Bose-Einstein distribution divided
by the Boltzmann distribution. The enhancement in figure 4 has two momentum
scales. For lower multiplicities the pr enhancement has a characteristic width of A,
while once the condensate is formed a narrow peak occurs at zero momentum with
a width of 1/R. Low pr enhancement has been searched for at CERN with mixed
results [4-7].

The modified two-particle correlation functions are shown in figure 5. These are
constructed by dividing the two-particle probabilities by the product of the single-
particle probabilities. The total momentum of the pair has been integrated over in
both the numerator and the denominator, and the correlation functions are shown
as a function of the relative momentum only. Again, this is for the gaussian case of
R =3.5fm and /Delta = 250MeV/c. The upper part of figure 5 shows the corre-
lation function for the case of unconstrained emission. The two-pion and single-pion
probabilities are constructed by using events with all different multiplicities. For the
three correlation functions shown in the upper portion of figure 5, 5 was adjusted to
yield average pion multiplicities of 200 for the dotted line, 125 for the light line, and
the heavy line shows the correlation function assuming only a few pions were emit-
ted. The correlation function broadens significantly once the multiplicity goes beyond
150. The intercept at k = 0 is unchanged. As# approaches the laser threshold the
width becomes infinite and the correlation function becomes flat. The lower portion
of figure 5 shows the correlation function where the two-pion and single-pion proba-
bilities are constructed using events of a fixed multiplicity. The behavior is strikingly
different from that shown in the upper portion of figure 5. The heavy line again cor-
responds to the correlation function for small multiplicities where higher order effects
are negligible. The light line and the dotted line correspond to multiplicities of 200
and 400 respectively. The intercept of the correlation function approaches unity as
the multiplicity goes to infinity. This is characteristic of a coherent state. This is
remarkable, as the sources were assumed to be incoherent. Whereas quantum me-
chanics textbooks refer to coherent states as those produced by coherently summing
states of different multiplicities, this behavior appears for fixed multiplicity.

A pion condensate is not the ground state for pions at a fixed energy density.
The ground state has zero chemical potential unless there is an isospin imbalance.
If a condensate were formed by over-populating the pion states at low momentum
there would be a tendency to return to equilibrium through annihilating pions and



using the energy to raise the temperature. Pion annihilation is a slow process in a
baryon-free region, because it requires at least 3 incoming incoming pions to produce
an outgoing on-shell state with fewer pions. Rates of pion annihilation have been
studied by several authors [8-11]. In a thermodynamic context, several authors have
introduced effective chemical potentials to account for the overpopulation of pions.
For an infinite system, condensation occurs when the chemical potential reaches the
pion mass.

Photon lasers require an overpopulation of the excited state or population in-
version in order to cascade coherently. In heavy-ion collisions the analog to the
population inversion is the initial energy of the colliding nucleons. This collective
energy can be considered the excited state which would prefer to become thermal en-
ergy through colliding and stopping. In ultrarelativistic heavy-ion collisions a great
deal more energy is in collective flow than in pions. Once laser behavior has started
it should continue until the driving collective energy is depleted and the nucleons
are at equilibrium with the pions. This limits the number of pions, but the limit is
several times larger than the number of pions usually produced in an ultrarelativistic
collision. Anomalous stopping is one signal of a pion laser.

Proton induced reactions can at times produce a large multiplicity, but the emis-
sion is usually spread over several units of rapidity, and multiparticle effects are
negligible. However, if a high energy proton were incident on a nuclear target, they
could collide up to a half dozen times, thus raising the density of like-pions to near
the lasing threshold. Large particle accelerators and cosmic rays can both serve as a
sources for high energy projectiles. One would look for lasing behavior in the high-
est multiplicity events, where the largest number of partons would have interacted.
To test whether the laser-like behavior has occurred is difficult because one would
be looking at the tail of a broad multiplicity distribution. Looking at events with
large multiplicity biases both the transverse energy spectra and the rapidity distribu-
tion due to energy conservation. Since the size of the system would be on the order
of 1 fermi, the peak in the transverse momentum- spectrum would be so bread, it
would meld into the background. Looking at two-particle correlations is also difficult
with only a few events. An independent signal would be large isospin fluctuations,
especially for events where the pions are spread over only a few units of rapidity.
Events with all the pions of the same charge should be preferentially enhanced by
symmetrization. This behavior has already been seen in cosmic ray measurements.
Events with an anomalous isospin imbalance are known as CENTAURO events.

To illustrate the effects of symmetrization on the isospin distribution, we use
the following simple model. We consider an emitter of pions that has isospin 1. We
assume that it has emitted 75 pions. Angular momentum algebra says that the emitter
has a 2/3 probability of emitting a charged pion and therefore reversing its isospin and
a 1/3 probability of emitting a neutral pion. This model conserves isospin which is
known to be important for describing multiplicity distributions[12], so the net charge
of the pions must be either -1, 1 or 0. Neglecting symmetrization, the distribution
is binomial and the average number of mos is 25. Including symmetrization, the
probability of emitting ng mys is:



1 75!
P(no) = - ol (75 — o)l w(no) w(ny) win.) (13)

The normalization is N and the symmetrization weights for the three charge
states are w(n). We calculate the symmetrization weights using the same gaussian
model as before with A = 250MeV/c. Figure 6 shows the isospin distribution for
three different sizes, R. For large sources the distribution is binomial, peaked at 25.
For smaller sources the distribution broadens.

This model is certainly oversimplified, but the qualitative effect of the symmetriza-
tion rests on one assumption - that the source size is small. Many more exotic
explanations of CENTAURO behavior are present in the literature. Before one be-
lieves explanations based on misaligned chiral condensates or quark nuggets, one must
thoroughly discount symmetrization as the cause. This requires performing careful
phenomenological calculations that match the rapidity distribution and transverse
energy spectra as well as the isospin imbalance.

An important ingredient which is missing in all the calculations here is the
coulomb interaction between the pions. The three-body quantum-mechanical
coulomb problem is not yet solved, and it is unlikely that the N-body problem will be
solved any time soon. For proton-induced reactions this is probably not so important.
Symmetrization enhances the correlation for relative momenta of the order of 1/R,
which for 1 fm sources is much larger than the characteristic momentum of the Gamow
coulomb correction. However, for large sources, the symmetrization enhancement in
two-particle correlation functions is significantly nullified by the Gamow correction.
Given the fact that both positive and negative particles might be in a condensate,
it is difficult to predict exactly what effect the coulomb repulsion will have. Luckily,
7os are not affected. It may well turn out that the only coherent behavior seen in
heavy-ion collisions is in the 7, sector. Coherent pion emission has been alluded to
several times in the literature{13, 14]. However, there lacked an explanation as to
how and when it should occur, given that the sources of the pions are incoherent.
In this paper we have presented a formalism which allows rapid calculation of sym-
metrization weights from incoherent sources. Symmetrization effects to all orders are
now calculable, even using complicated simulations to generate the source functions.
Even if critical densities are not obtained for lasing the pions, these methods will be
crucial for understanding the large multi-pion distortions to the single and two-body
pion measurements to be made in upcoming experiments. The gaussian models used
here, although overly simple, were sufficient to illustrate the wide variety of fasci-
nating phenomena that might occur in the next generation of relativistic heavy-ion
experiments and may already be present in cosmic ray data.

This behavior is not predicated on any exotic physical assumptions, only on the
fact that pions are bosons and that the systems are attempting to emit a large num-
ber of them in a small amount of phase space. It seems inescapable that once energy
densities of the order of .5 GeV/fm? are produced in heavy ion reactions, using col-
lisions that emit pions with the pr spectra of proton-proton collisions, that laser-like
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behavior will take place. From viewing figure 4 one concludes that the laser behavior
turns on sharply. Doubling the number of sources changes a nearly negligible sym-
metrization effect into an unstable coherent cascade. Energy densities of precisely
this order are expected to be achieved with the upcoming lead beam at CERN. At
the relativistic heavy ion collider to be built at Brookhaven (RHIC), the energy den-
sities will be much higher. Although the state of matter at higher density should be
that of the quark-gluon plasma, the matter will have to return to the hadronic state.
During the rapid cooling of the plasma, supercooling might well take place. In that
event the system might find itself in a situation where it is trying to convert a large
amount of energy to pions, using sources (quark droplets or tubes) which are at a
lower temperature than an equilibrated hadronic gas at that energy density. These
conditions would be ripe for producing a pion condensate. Certainly, a great deal
of speculation can take place regarding behavior in upcoming experiments. Unlike
many aspects of detecting the quark-gluon plasma, the consequences of coherent pion
emission: anomalous stopping, isospin fluctuations, damping of the two-particle cor-
relation function and low pr enhancement, are unambiguous and directly measurable.
This aspect should foster a fruitful interaction between theory and experiment.
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Multiplicity Distribution
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Figure 1. The light line represents a Poissonian multiplicity distribution with a
mean of 14. The heavy line shows the same multiplicity distribution corrected for
Bose-Einstein symmetrization. The source functions were assumed to be gaussian
with a size R = 1.5fm and a momentum spread-4 = 250MeV/ec.
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Figure 2. The heavy line represents the mean multiplicity for a system that would
emit with Poissonian weights characterized by #, if symmetrization were neglected.
The source function was assumed to be gaussian with R = 3.5 fm and i@ = 250MeV/c.
As n approaches 7, the sums in equation (7) no longer converge and the average
multiplicity goes to infinity. If the source were large, symmetrization would not be
important and the result would be the light line, ¥ = 7.



Critical Density
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Figure 3. For a gaussian source of size R, the critical density is the density at
the origin required for lasing. If the emission of pions is random (Poissonian) and
one expects a pion density greater than the critical density when symmetrization is
neglected, the inclusion of symmetrization leads to infinite multiplicity. Finite-size
effects require a higher critical density for small sources.
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Single-Body Spectra

100 200 300 400
p(MeV/c)

Figure 4. The single-particle spectra divided by what the spectra would be if sym-
metrization were negiected is shown as a function of the momenta for a 3.5fm source
where the particle number is fixed at 125 (light line), 200 (heavy line) and 400 (dotted
line). For low densities this is the analog to the Bose-Einstein spectrum divided by
the Boltzmann spectrum, but for large particle number, a significant fraction of the
pions populate the lowest energy state which has a width 1/R.
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Figure 5. The top figure shows the two-pion correlation function for an uncon-
strained (Poissonian) 3.5fm source. Here the correlation functions are constructed

from events of all multiplicities where the average number of pions from the event
vary from just a few (heavy line) to 125 (light line) to 200 (dotted line). The intercept
does not change, but the width increases. The bottom figure shows the correlation
function when the multiplicity of the events used to construct the correlation function
is fixed at a few (heavy line), 200 (light line) and 400 (dotted line). The intercept
then falls for high multiplicities.



Isospin Distribution
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Figure 8. The probability of emitting IV »y s given that 75 pions were emitted is
shown for gaussian source sizes of .7 fm (dotted line), 1.5 fm (light line) and large R
(heavy line). The effect of the symmetrization is to enhance the events where all the
pions are of the same flavor, which broadens the distribution when R is small.



