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#botract: The procedure of constraining the quantum dynamics to
some particular trial manifolds is_largely applied in order to
obtain time~dependent approximations to the guantum evolution,
and the connection between such results and the exact stationary
states represents the requantization problem. In the following
it will be shown that the requantizatién give also an explicit
realization of the geometric objects encountered in the
prequantization formalism, pointing out a direct correspondence
between the stationary sﬁates and the reduced space for the
invariant manifolds of the constrained flow. Moreover, it will
appear that different techniques of the many-body theory as the
random phase approximation and the method of the projection
operators may receive an unified tre&tment within a general
requantization foermalism. This will operate a selection among
the states appropriate for projection, and‘will allow to derive
a form of generalized random phase approximation in terms of the
representation operators for the semisimple Lie algebras, rather
than of their explicit realizations using creation and

annihilation operators.

PACS numbers: 03.66.-w; 02.40.4m; 11.30.Qc



INTRODUCTION

The correspondence between the phase portrait of the classical
dynamical systems and their quantum correspondent is a subject
of increasing interest, motivated in .part by the attempts_ to
develop a consistent quantum description of the collective
behaviour or of the chaotic dynamics [11].

The effective interactions for the realistic systems
encountered in chemistry, nuclear physics or condensed matter
physics are complicated, but reasonable aﬁproximations for the
ground state may still be obtained if the dominant interaction
term appears from a collective mean fieid. In such cases the
low~lying spectra show a simple structure, described in terms of
a small number of collective degrees of freedom. Their connection
with the original quantum dynamics is a basic problem of the
many-body theory, and a common procedure adopted for the
separation of the collective subspace was first to construct an
"artificial" classical system by constraining the quantum
dynamics from the full Hilbert space ¥ to some finite dimensional
trial manifold, and than to search for slow decoupled modes
[2-3]. Common examples of such constrained.systems are the time
dependent Hartree-Fock {TDHF) or Hartree- Fock - Bogolyubov
(TDHFB) equations, which are derived for particular trial
manifolds as the 8U(n) or 80(2n) coherent states, respectively
[4]. However the hybrid character of their solutions, including
both quantum and classical aspects have given difficulties of
interpretation. For an effective appfoximation to the exact

quantum result it becomes therefore necessary to develop an



additional "requantization" procedure, mapping the constrained
dynamics to the original Hilberf space, This problem has not
yet a complete solution, but were' obtained important partial
results. Thus, the methods of the_induced representations ,[5],
or of the geometric quantization ,[6], allow to overpass the
difficulties dues to the peculiar geometry of the classical
models, but the constrained dynamics is mapped in an abstract
quantum Hilbert space ,constiructed physically independent on the
initial one. A different procedure rapplied in many recent works,
consider the orbits dense on invariant tori of the constrained
system as the key elements for requantization, and wusing the
conditions of periodicity and "gauge invariance" ({GIPQ),
establishes a direct connection between them and the stationary
states [7-9].

It is worth noting that if the classical phase spgce would be
considered as a particular constraining manifold, than GIPQ
would complement the relation between the periodic orbits and
the density of states embodied in ihe Gutzwiller trace formula
[10}. In this limit case the exact correspondence between the
classical and the quantum dynamics is given by quantization
rgther than by requantization, and therefore one should expect a
close relation between these two methods.

This paper represents an attempt to illustrate the connection
between the GIPQ requantizaton of the constrained dynamics and
the geometric prequantization method developed in order to
construct representations for the Poisson algebra of the
classical observables ,[11]., The problem of the constraining

manifeolds, known to play a crucial role, will be also discussed,



considering instead of the HF or HFB manifolds general .coherent
states for semisimple Lie groups. In addition will be presented
a procedure to build natural conétraining manifolds on
spontaneous symmetry breaking ground states ,[12].

The first part contains a description of the geometric
structures associated with the exact quantum dynamics, as well
as with the constrained dynamics_pn the trial function manifold.

In the second part is discussed the requantization of the
integrable systems, pointing out the close analogy between
prequanfization and GIPQ. On examples it will be shown that GIPQ
embodies naturally both the random phase approximation (RPA)
used in the treatment of the small amplitude vibrations, and
techniques developed for the restoration of the broken
symmetries, as the method of the projection 6perators.

In the last part, the main results and conclusions are

summarized.

I. The Constrained Quantum Dynamics

The full quantum dynamics in the Hilbert space ¥ is given by

the time~dependent Schrddinger equation ,{TDSE),:
ihiy> = Hjw> “ (1)

where ﬁ is the Hamiltonian operator,defined on a dense domain in
#. This equation was related to the formalism of the classical
mechanics by its derivation from the "variational principle"
Io:SJ’W]:O,.«with fﬂﬂ] = J"dt(wlihd;ﬁlw) » However,it can also be
seen as the equation corresponding to the flow of the quantum

states |y e,



w>= X W (2)
under the action of the Hamiltonian field XH(W=—i/hH|w>
defined on ¥ by the Hamilton function hwr=<y|H|y>, h:%—R, and

the symplectic form Logee sze) [13,4.2]:

wif(x,Y) z 2h Im<Xpn | Yop> _ (3)
X , Yeyn € nge
through the relation ixwge=dh. Here and in the following ¥ will

H
be assumed finite dimensional yalthough part of the results

remain valid in the infinite dimensional case.

The invariance of h to the action of the group U(l) on %,
defined by ¢c|w>=c|w>, cet’(l), lead té the conservation of the
norm Il |y>l = Y<y[y> ,making possible the reduction of the
dynamical problem from £ to the projective space [PHC associated
to ¥ [14,5.5.C].

If L = {|y>e¥/<yly>=1}, and I'I:L--&ﬁ’ge is the projection :

MClw>)z [lw>1=(e® >, |yreL,pel0,2n1) (4)

then according to the general theory of the Marsden-Weinstein

reduction , any curve |Zt>rEL having as projection [[Zt>y], a

solution yt of the reduced dynamical system defined on [ng'
determines uniquely the TDSE solution on %:

_ Y fit ¥y
|w>t- ¢ctlzt> = e 'Zt> | {5)
if
: v . TN 4
fIZt> = XH(IZQY) |zt> (6)

Assuming further H be time-independent, then h=<yp|H|y> is a



constant § and |w>t becomes:
.. " )
- - —— 8t - far ”<zT|oT|zT>”
|w>t= e 0 lzt>? {7)
This result has a peculiar geometrical interpretation within
the framework of the prequantization theory, because by the
smooth , free and proper action ¢:U(1)XL———+L of the "gauge

group" U(1l) ,L is a principal circle bundle over P [14,4.1M].

However, each normed state in # generate a onege dimensional
Hilbert space ,and due to the natural action of ' the structure
group on this space ,L appear also aa'the unit section in the
associated complex vector bundle [i16)]. The 1-form ow!f(L)

,aw(X) z —-ih<y|X> ,XeTwL_,(da =<Jr|L), is a connection form on
~ 2
L, having as curvature the reduced symplectic form w € 0 ([P

» - | o
I o= IL.

o

Using the standard notations ,the covariant derivative of the

states from L ,along ¥ on P*,,yt= ﬂ(|Z>t) yis:

D|Z>
= N >
e = Y, 12

% a({z>) |2z> = <z|2>|2Z> (8)

Thereforé, the curve:
t
—rar ¥<z |&_ |2 >ru
o (o S _
e |2 >, (9)
is autoparallel along ¥y ,while |w>t corresponds to the 1lift of

“ ¥
|z >
t

It

the Hamiltonian current from ?*,to the bundle L.
Consider now instead L a trial manifold P of normed functions

chosen as M=[I(P) to be a symplectic manifold, with the

\ M . L * ' * M
symplectic form w related to the restriction of @ to P by I1 w



mjr|P. In this case denote by hu:M———+R the restriction of the

Hamiltonian h(|y>)s<¢{H|y> to M ,and by zé(xi,xz ’...XZN) both

the parameters of the trial functions |Z>£EP, and the local

M
coordinates of the point H(IZ)I)EM. Than the symplectic form
is explicitly:

2N . .
W' =F o dxA ax', o =h Im<d 2|8 2> (10)
ij=t ! !
(GiE gxi} sand the constrained Hamiltonian current induced by hu
is given by the equations:

2N ahu _ 7
L2 e = —2 (11)
j=1 oax!

In addition if M is quantizable, so that U(1l)*P is a principal
bundle LM over M ,than the original bundle structure H:L——-—-Iﬂ’*.
may be reproduced also for the constrained system, First of all,
the restriction of the 1-form aﬁﬁf(L) to Lu determines in the
local system represented by the trial function§ }Z>EP the 1-form

associated to the connection ﬁzeff(M):

eN "
& =V <Z|@ |Z>dx (12)
Z k=1 k

Than,'along the lines of the prequantization theory, the
connection make possible to lift the Hamiltonian flow from M to

Lu' If Qt is an integral curve on M given by (11), its 1lift to

LH, denoted bY'ﬁQ|Z> is

- - i
pt|Z> = exp[ o $t +i@t ] ]Z)t (13)



-~ t
= 2 |i = <
$ <Z|H|Z> , |z>t |z>£t, @t :dT T z|10T|z>T
and by construction, it gives the exact TDSE solution when P is

extended to L. This function was obtained previously wusing the
extended variational equation:

SSE(X,%,r,r,0,p) dt =0 (14)
with £= <¢|ih0t- ﬁ|¢> and |¢>=reip|z>&, [7-8] | and its
similarity with the exact stationary solutions was the starting
point for the GIPQ quantization. Here the presence of the

additional variational parameters r,p.give the correct lift to

LM, showing that ;%|Z> can be seen as the best approximation of
the TDSE solutions in L“.

The phase Gh is widely known as the Berry’s phase, and it was
derived first <for the eigenfunctions of the adiabatic

time-dependent Hamiltonians ,[16-19].
IT. THE REQUANTIZATION OF THE INTEGRABLE SYSYEMS

In general the exact stationary states are not rlaced on the
trial manifold P, but nevertheless they influence the phase
portrait of the constrained system. The corresapondence between

the exact stationary states and the orbits of Xh on M
M

will represent in the following the requantization problem for

the time-dependent solutions, and as it was mentioned above ,a

first result in this direction was the requantization of the

closed orbits using the conditions of gauge invariance and

periodicity (GIPQ) [7]. The GIPQ method was developed mainly



for computational purposes, but its basic elements have also a
simple geometrical interpretation .within_ the prequantization
formalism {11].

If # denotes the set of the closed ofbits ?t=ﬂ(lz>f) on M,
than the GIPQ approximation to the stationary states is given by

‘the autoparallel vectors:
t
Z5> = o8 g cpar ¥ ool r |
|z>tu e 1 |z>t , G%"idf T<z|10T|z>T yref (15)
which are periodic.
Using the "gauge" fixed by the functions |Z>y having the same
period TT as ¥ ,denoted IU>r the periodicity condition |Z>T

=|Z>f+T y¥€F, become a restriction on ®, written as ®T=2kﬂ,kez.
Y 4

Stated in terms of the 1-form BU this restriction is:

1 ' '
2T GQUE 2 (16)

but unlike the initial periodicity condition is gauge-dependent.

Therefore, it is convenient to use the local relation wuz —ihdﬁu
to express (16) in the intrinsic form:

1 ,

= e Yy =80 (17)

<o
Consider now the dynamical system defined on M=[[(P} to be

completely integrable in the action-angle coordinates (p,q),
. i 2 N . .
with q = (¢ ,p ,... »¢ ) representing the angle coordinates on

the torus TN, and p = (Ii,Iz;...,IN) :M——+RN sy N independent

functions in involution representing the action variables. If

there is no degeneracy, than the closed orbits correspond to the



fundamental cycles { yk,kal,N } of TN y wWwhile any other orbit

will cover densely TN. According. to [8] this particular feature
of the general orbits should be also accounted by the

quantization condition, proposing to extend the restriction (16)

N
from the basic cycles to every closed curve Y on T .
Consequently instead of selecting a discrete set of closed

orbits for each fundamental cycle in part, one select a discrete

get of invariant tori {T: y k&2 } requiring for all the action
variables to be simultaneously integral multiples of h,.

This quantization of the action variables is the same as by
the standard Bohr - Wilson - Sommerfeld condition, but it has
also a direct correspondent  within the prequantization
formalism. To show this, let us recall that if (N,w) is a
presymplectic reducible manifold, and 3’18 the foliation defined
by the characteristic distribution of &, than the reduced space

§°=Nﬁ? is quantizable when :

1
ey $0e 2 (18)

with & aﬁy global 1-form such that ® = d®, and y every closed
curve contained in a leaf of ¥ ,[20]. Now if the invariant torus
TN known to be a Lagrangean submanifold in M is considered as a
limit case of presymplectic manifold, than ﬁ; is a point, and
the condition (16) in the extended form become the quantization

condition for this particular reduced space. This approach has

- the quality of opening a new perspective on the requantization

problem, because the appropriate correspondent for the stationary

states appear to be the reduced space rather than the invariant



torus.

As it was noticed before, although the set of autoparallel

vectors in correspondence with the stationary states is limited
N
by GIPQ only to those lying above an orbit yk dense on the

quantized torus T:, their dependence on time and initial
conditions make them quite different on the exact eigenstates.
To avoid such difficulties, it was proposed further (81, to

consider as an effective approximation for the exact eigenstates

Iwk> the time - average [T:> ~ of the selected autoparallel
vectors:
N . 1 ~ . N
1T, >= lim — sat |27k (19)
t— ® 0

This average is determined only by the quantized action
variables, but the accuracy of this approximation may depend
strongly on the choice of P. Therefore it is very important to
analyse the results on particular examples by comparison with
other methods, or to derive criteria for the selection of
appropriate trial manifolds. Such examples will be provided in

the following by the orbit cylinders and by the coherent states

for semisimple Lie groups.

xample 1. The exact endit cylinders

i
- 5 Ht

Let #= {y=ﬂ(|z>r)/ |Z>TE e ]Z>§), th} be a regular orbit

10



cylindér in Pﬂ’[14] corresponding to the exact THSE solutions.
The invariant tori are in this case the dloaed orbits y&f¥., If ¥

is a periodic orbit, than |Z>y should be quasiperiodic, and the

4

periodic gauge function |U> can be written as "Bloch amplitude"”

Y
t.

4 .
|U>f= els t/h|z> Here the quasienergy s? is defined up to

integer multiples of hwy= h/Ty » and is chosen within the first
"Brillouin zone" [—hwylz,hwr/21. The gquantization formula

selecting the orbits rn now say :<Z]legr = nho' + sr,hez, and

the associated stationary states:

" . ‘ - % (ﬁ - Eyn)t ?n
lr > = T n #dt e |Z>o {20)
4
represents the projection of the state |Z>: on the subspace of
the eigenfunctions of H corresponding to the eigenvalue

87n=z<Z|H|Zgy + The result is close to the ergodic mean theorem
y[14,3.7.24), and can be easily pictured for the harmonic
oscillator, choosing the orbit c¢ylinder associated to the

Glauber coherent states.

-~

For this simple system ¥ is the Fock space »&nd H=hw(a+a+ -12-),
with a=Y(mw/2h) (x + Eﬁ—p ). Let P be the Glauber manifold :
: 2 +
» -
P={|Z>=exp(za+ -z a)|0>=e IZL /2 e2® |0>, zeC} (21)

For this choice the trajectories on M=z[1(P) are given by zt=

exp(-iwt)zo, and the condition (168) fix the values Z:’8n=
Iznlz =nelN
0

Bn = hco([_zgl2 + % )'= hw(n + % ) (22)

1



Moreover, t<Z|iatlz>t= W Izolz » the: period of the selected

orbit rn is independent on n and the average of the function
~ n + » n -t on
|Z>{= exp{inwt + zta ~z: a){0>, zt =z e zo, expressed by:

n 1 ~ yn 1 tnwt-lzn]z/z z'a’
|;v>=wT-0dt; |z>t=;r-§e o et |O> (23)

coincide up to a normalization factor with the exact solution
+
Y1/nt(a )n|0>.

It is worth noting that the "cohérence" of the Glauber states

make the 1lift p&|Z> be an exact TDSE solution.

Sxample 2. Beherent ototes fon ocemioimple Lie Y. cT7 !

Consider M= [I(P) to be the coherent state Kihler submanifold

of E’gc generated by the projection of the group - orbit

A » 7 .
P={|Z>=Ualm>, acG, |M>e¥, M € g8 } of the semisimple Lie group G
through the highest weight vector |M> from ¥ [21-22].

Choosing a localrset of 2N real parameters { Ej. J=1,2N }

~ A NN

'~ and denoting by :DkU = Uwide, Hu = U_1HU y than {(10) give

2w5k=ih<m|[ﬂjU,ﬂkU]|m>, and the equations (11) become:

2N n

hE L <RI[DU,DUNRW> = <W|[H ,D UM > (24)
=1
The global integration of these equations and the separation

of the periodic orbits is a difficult task, but locally, around

the critical points given by the minimum of hu= <M1 U-1HUIR> ,the

periodic orbits exists , and may be found integrating the

1z



liniarized equations.

»
If Aeg is the set of roots for the Lie algebra gETeG, with

- ~

Zz={m e A, (me)w}, and {E, , H / m=E_m*

Hml’.ub = (m,|)|Mm> Ve
represents in ¥ the Cartan-Weyl basis for g ,than around a

critical point Uolib € P,the manifold P is parameterized by the

real and imaginary parts of the complex variables {ﬁu M el }

defined through:
{2> = szn>

~ »~ . ~ » bl .
U =U exp}y (2, E_ - z E_) (25)
z L mes m m w -m

~

In U°|ﬁ> yfor these parameters W, . become: @ = = 0,
I] m’ n ym’yu
= - = =N . B >
m“m'yu h<M| [.I)Z;J!,.ﬁz_z]llb h csmmnnm,n_num (26)

and retaining only the linear +terms in 2z, the equationa of

motion are:

iz, MI[E,E_]IB> = Wy E 1M -

- L - - (27)
-L <m|[[(anu “Zy E ) H ],E_m]lab
nex 0

-~

The condition as U°|m>_ be a critical point is expressed by the

equation :

<m|{HU°,E_m}|11t> =0 m e I (28)

determining Uo. However, further will be taken UhaI, supposing
that if the critical minimum point exists, than it represents
the ground state ,and defines the element |M> from P. In

addition, this element will be assumed invariant to the symmetry

13



group of ﬁ; When the ground state has not this property, the
action of the identity component for the symmetry group generate
a critical manifold for h“ sydirectly related to the occurrence
of the collective modes. As important examples ,may be mentioned
the anisotropic ground states within HF or the superfluid states
within HFB. These are not invariant to the action of the
rotation group SO(3,R), respectively of the "gauge" group U(l)
generated by the particle number operator.

Let |M> be a symmetry-preserving minimum point , and consider
the periodic orbits asscociated to the normal vibration modes.
These are found after the calculus of the complex amplitudes
{xm,ym,m € X} and of the oscillation period T occurring in the

general periodic solution:

w ~iwt it
zm = xme v + Ymet. , M € T,0=2n1/T {29)

Replacing this solution in the liniarized equation, a time-

independent aystem is obtained:

) [18,8*] - v 8*, B, ]I®> =0 Ymena,mmmeo (30

Y
where B denotes the sum:

~

+ ~ L .

B=FT (XE-Y E_) (31)
wmers m m m | .

For the periodic solution (29) the integrand in the formula

A_1 ~
(16) ,<M|v OTUHID, is dominated by the term:

~ ~ . "
E RMIE ,E_1|R> Im(z 2 ) =
mes meo-m o um (32)
_ -~ "~ . 2- z
= -w ¥ <ml[Em,E_m]|m>(|xm| 1Y)

me :
and the quantization condition for the classical amplitudes

14



becomes:

~rooz 2 2
L RIELLE GIWIX, 17 - |V, 17)= n ,n=t,2,... (33)
mel

The result is meaningful only if the values of the guantized
amplitudes are within the range allowed - by the linear
approximation employed. Assuming this to be true for n=1 sy the

autoparallel section having the period T becomes:
W A ~iwt 4+ )

|2:>-t = e exp(e B - e B) |®> (34)

and the stationary state given by the time average is:
~ ~+
lw> = % ¢ |z>‘:’ dt = B"|M> (35)

In the HF case, G=SU(n), and the set of generators associated to
the roots MeX contains A(n-A) operators {c:cj,A-tlﬁi.Sn,lSjSA},
defined using the single-particle fermion operators for creation
and annihilation {c:,ctﬁ=1,n}.With these operators (30) becomes
the RPA equation in the particle-hole channel yand for the first
excited state ,(n=1), the condition (33) reduces to the
normalization equation for the RPA operators y <M | [1;,;1+][m> =1,
Similarly, choosing G=SO{2n), the quantization of the normal
vibrations lead to the RPA equations in the particle-particle

channel.

Bxomple 3. The oymplecthc manifelds induced 8y
dRenionesus Symameiny dreahing

~

Consider the symmetry group of the Hamiltonian H to be the

N-dimensional torus G=U(1)xU{(1)x...U{(1), and assume that the

ground state of H is non-invariant to the action of @ given by

i5



the unitary representation operators :

i N k °
- “RLP L
Uq = e k=1 (36)

- ~

with {Lt’Lklz 0 and q E_(p‘,pz,... ,pN) the coordinates on G.

Asaume also that Lk are all time-even, namely by complex

~

conjugation £: = 1% +k=1,N.

This situation appears frequently for the approximate ground
states obtained by constrained variational calculations, but may
also be expected for the exact ones at the classical limit, when
the system become macroscopic.Thus let (M,wu) be 4 general trial
manifold invariant to @G, and {g> a deformed ground state
solution of the variational equation 6<z|ﬁ|z>=o, with |Z>eM.

This solution is not unique in general, and let assume further

that all the minima with the lowest energy are on the critical

submanifold Q<M ,Q={Uq”}|g>,rEG} generated by the action of G

on {g>. Choosing the angles (pi,pz,... ,pN) as parameters on @ ,

it appears that w¥1j|Q=O’ and therefore Q@ is an isotropic
v

submanifold in M,

If @ is isotropic, than at any g€Q the tangent space TqQ has a
coisotropic wu-orthogonal complement Fq defined by
Fq={XETqM|w (X,Y)= 0 for all YETqQ} y{14], and the quotient Eq=

Fq/TqQ is a symplectic vector space. Consider Pq to be a

complement of F; , that is TqM=PqQF&.Than Pq is isotropic, with

16



the same dimension as TqQ,‘and such that m" restricted to quTqQ
is nondegenerate. Thus locally, at every point q of @ one has a
classical phase space structure, with-Pq reprgsenting the space
of the action variables canonically conjugate to the angle
coordinates . The remaining variableé may be considered as
"intrinsic" and are represented within Eq.

Suppose now that at low energies the system has no intrinsic
excitations and is completely integrable in action-angle
coordinates. Than the angle coordinates will be clearly
represented by the parameters of a, while the action

coordinates will be represented by the components of the

momentum mapping 3:M——+RN, Jk(Z)= <z|£k|z> for the action of @&
on M [14].

Although this choice solve coﬁpletely the classical problem,
for requantization is necessary in addition to find explicitly

an extension of Q to a symplectic submanifold parameterized by

Qq and P. Let us assume that

-~

= U Z>
(q,p) Q“"I (0,p)’ _
with |Z>(0 P) a vector depending smoothly on P, to be determined
]

£ =42 reG } (37)

such that pk= <z(0,p)ILkIZ(O,p)>’ |Z>(0’9) =|g>,and

dh
pk = M. Kk (38)
apk
= =<7 0 i R
Here hu(p,q) hu(p,O} <Z(0’p)|H|Z(0'p)>, while A and ¢ are

constant vectors. A simple calculation shows that for this

17



choice 2w™. | =6, , and &
i 'JF ik
P, o'y

According to (38), the vector |Z

> may be defined as the
(0,p)° &

minimum of h" on TN=3d(p) Jjoined smoothly with |g>. This

constrained variational calculation becomes a normal one for the

~ ~ N ~
modified Hamiltonian HG=H— X KkLk 4{23], intensively used within
k=
the self-consistent cranking model of the collective rotations.
- >
Thus, denoting by |Z>k the minima of (ZIHC|Z> and by hp the
value determined from pk= -h<z|Lilz>k’ the result is

-~

fZ> =|Z> . The time reversal properties of the operators L

M
ensure than o =0
p.p |y

This result complete the construction of the manifold P as
well as of the invariant tori TN parameterized by the action

variables P. Considering the frequencies kk non-degenerate, the
requantization procedure may continue along the standard lines
with the selection of a discrete set of invariant tori and with
the calculus of the approximate eigenstates of the Hamiltonian.

As it was shown in [8] the timeiaverage of the orbits dense on

a selected torus TN may be replaced by the "space average", and

finally the state (19) become:

18



P k

-= (L-p o
(T > -% m ¢ dg¥e D WP |Z> (39)
k=14,N (0,p)

representing the projection of the state | on  the

2> 0,p)

with the eigenvalues

~

common eigenvector of the opefators Lk'

Pk =nkh, n € 2.

I1I. Discussion and Conclusions

The natural restriction of the quantum dynamics to the normed
functions manifold was treated now as a model for quantizable
constraining manifolds M not 'necesﬁarily determined by
symmetries.

Considering time-independent Hamiltonian gystems, it was
discussed the correspondence between the prequantization
formalism and the GIPQ requantization of the constrained
dynamics. For completely integrable systems this comparison has
revealed the role of the reduced space associated to the
quantized invariant tori as the appropriate correspondent to the
stationary states. Therefore it becomes possible a direct
extension to more complicated systems, when the reduced space
projected from the invariant manifold is not a point.

The choice of the constraining manifold, known to play a
central role for the accuracy of the requantization procedure,
was also discussed, particularly important appearing the exact

orbit cylinders or the manifolds related to the symmetry
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breaking critical points. Depending on this choice, the
proposed method appear as a fine instrument either for the atudy
of the exact quantum dynamics ,or of the collective modes, In
particular,it shows the common nature of the_ problems solved
usually by different techniques, as the projection methods and
random phase approximation.

It is worth noting that among the harmonic oscillator
constraining manifolds, the Glauber states are diﬁtinguished
because include the ground state and the restricted dyﬁamics
becomes that of the associated classical states. Therefore, in
this case the problem of quantization may be stated as the
requantization of the constrained dynamics, rather than its
correspondence with an isomorphic, but different quantum
framework.

For the many-body systems an approximation of such coherent
manifolds might be represented by the classical rhase space
ihduced by spontaneous symmetry breaking presented in the

example 3, but in general remains an interesting open problem.
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