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1. Introduction

Interest in transport theory in nuclear physics in the last decade has been spurred
by the experimental studies of energetic reactions involving heavy nuclei. In these
reactions the nuclei are broken up into nucleons and lighter nuclei. New particles,
such as gammas and, at higher bombarding energies, 7 and K mesons are produced
in collisions. At very high energies quark and gluon degrees of freedom become of
importance, but this goes beyond the scope of the talk. Unlike in plasma physics or
in different areas of astrophysics, the Wigner phase-space distributions used in the
theoretical descriptions of energetic reactions do not merely represent the statistically-
averaged pointlike distributions. The distributions generally account for a quantum
spread such as for the wavepacket of a single particle.

The dynamics of the reactjons is dominated by strong interactions which are also
responsible for nuclear binding. The nucleon-nucleon (NN) interactions are attractive
at low relative momenta and short-range, ryn ~ 1fm = 10~%m. The nuclear radius,
for comparison, behaves with the nucleon number A as R ~ 1.2fin A}/3. Heaviest
nuclei existing in nature have A in the vicinity of 240. The nuclear mass is limited by
the repulsive Coulomb interaction which, although weeak, is long-range.

Essential for the physics of nuclei and lower-energy reactions is the fact that nucle-
ons are fermions. Pauli principle suppresses NN scattering and in the nuclear ground
state the nucleons primarily see an averaged-out potential field of other nucleons of a



depth V5 >~ —50MeV.

Energy scales of importance for the reactions are easily deduced The binding
energies of medium and heavy nuclei equal about 8 MeV/nucleon. A complete breakup
of the nuclei requires bombarding energies few times in excess of that value. The
rest energy for the lightest strongly-interacting particle 7 meson is myc? ~ 135MeV.
These particles start to be produced in significant numbers in collisions at bombarding
energies per nucleon few times in excess of their rest energy. Finally, the internal
structure of nucleons and mesons starts to play a role at bombarding energies few
times in excess of the nucleon rest mass myc? ~ 939MeV ~ 1GeV.

The nucleon Fermi momentum is pr ~ 260MeV/c. The momentum combined
with the NN interaction-range yields pr ryn ~ h. This indicates that in descriptions
of reactions the individual NN interactions need to be treated quantally. Though
characteristic momenta rise somewhat with the bombarding energy in reactions, the
interactions also become inelastic. The inelastic processes as such escape a classical
description. The Fermi momentum combined with a radius for medium or heavy nuclei
yields on the other hand prR ~ few h. This indicates the possibility of a classical
description of the motion over a nuclear size.

In the past some elaborate methods have been developed for the purpose of under-
standing the properties of nuclei in their ground-state and in low-lying excited states,
such as Brueckner and variational methods. The quantities of interest in theoretical
studies included the effective NN interaction in nuclear matter, binding energy per
nucleon, and saturation density. Much work has been done on the description of pe-
ripheral reactions especially those induced by light projectiles. These so-called direct
reactions are typically described in the energy representation. For describing the scat-
tering of nucleons from nuclei a complex optical potential is used, U = V + iW. The
depth of the real part coincides at low energies with the potential depth for bound
nucleons, and the imaginary part is equal to the negative of a half of the rate for s-
cattering with individual nucleons. Nucleon optical potential is also used in describing
the central collisions of heavy nuclei.

The many degrees of freedom involved in high-energy reactions, with the multitude
of stages, generally force one to use a limited description for the reactions, primarily
relying on the single-particle quantities in the time-representation. In my talk I am first
going to discuss the general so-called real-time theory concerned with an evolution of
physical quantities in a quantum many-body system. Even on a single-particle level the
theory is too complex to be directly applied to reactions. However, it provides useful
links to the ground-state and direct-reaction theories. Further, within that theory,
transport equations may be derived which are simple enough to be practically applied.
Conditions for the validity of equations may be analysed and terms in the equations
‘may be given a fundamental basis. In the second part of my talk I shall discuss the
transport-theory applications to reactions.



2. Many Bodies in Real Time

2.1. Perturbative Expansion

Physical quantities are represented by operators. An expectation value at time ¢ is
given by

Tr(On(n)g) _ Tr (#7700 o))
Tr(p) Tr(p)
Tr (ﬁ(t{), t1)0[ﬁ(t1 ’ to)ﬁ)
Tr(p)

where Oy is an operator in Heisenberg representation, j is a density operator that
specifies state at time ¢, and units are such that i = 1. In the expectation value in
the Schrodinger or interaction representation the evolution goes forward and then back-
ward in time. Expectation values can be expanded perturbatively in the interaction
representation, but track has to be kept not only of the instant at which interaction
occurred but also whether interaction occurred during the forward or backward evolu-
tion. The easiest way to handle this is by introducing a contour along the time axis
going forward and backward, Fig. 1, and defining quantities on the contour. The con-
tour never appears in the consideration of ground-state expectation values or processes
in the vacuum, and I shall spend some time explaining the reason.

Following the Gell-Mann-Low theorem, a ground-state, including a relativistic
vacuum state, can be obtained from the noninteracting state by adiabatically smtchmg
on the interaction, |¥ >= U(t, —00)|® >. An expectation value of an operator in the
- ground state becomes then

<On(t) > =
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(2)
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Fig. 1. Contour along the time axis for an evaluation of the operator expectation
value.
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Fig. 2. Calculation of a ground-state expectation value.

The last expression follows from the fact that I(—o0,+00)|@ > is up to an (infinite)
phase factor equal to |® >. This enables one to insert a projection operator onto | >
between operators U above, and exploit

1 =< @|U(~00, +00)|® >< 3|T(+00, ~00)|® >.. (3)

Operations in (2) are illustrated in Fig. 2. In the case of a ground-state expectation
value the contour may be elongated to +co and cut. In the last expression in (2) the
evolution proceeds only forward in time. For £; > ¢, the evolution operator is

-~ tl ~
U(tl,to) = T"exp (—"'l dt'H} (t’)) ’ (4)

to

where H 7 is the interaction hamiltonian and 7' a chronological-ordering operator, and,
accordingly, the expectation value (2) may be represented as

< ®|T* [exp (—i I, dBNE)) OI(t)] 1® >

BT Y GTCR771%) [
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The r.h.s. may be then expanded in terms of the interaction and further the noninter-
acting chronological Green’s functions,

iG3(2,t, @, ) =< BT [br(=, )] (2, )] |2 >, (6)

using the fact that the expectation value of a product of the interaction-picture field-
operators can be represented with a product of the expectation values of pairs of the
operators. The result (5) is easily extended to an expectation value of the chrono-
logically ordered product of operators with different time-arguments. Application of
the reduction formula to a few-point vacuum chronological Green'’s function, yields the
Feynman-diagram expansion for the scattering matrix.



The above procedure cannot be applied in case of any arbitrary initial state,
because the adiabatic switching on and off of the interaction would not return the
system to the same state. The evolution proceeding backward in time in (1) must be
dealt with directly. For {5 < ¢, the evolution operator is

-~ to ~

U(to,t1) = T%xp (—i dt'H}(t')) , (7)
t

where T* is an antichronological ordering operator. The expectation value (1), with

(4) and (7), may be written in a compact form upon assigning operators to the sides

of the contour in Fig. 1, and introducing an operator T ordering along the contour,

generalizing T¢ and T,

to

< On(t) > =<T° [exp (—i dt'ﬁ}(t'))] Or(t1)

t

x T¢ [exp (—z' " dt'ﬁ}(t'))] > (8)

to
to . .
=<T [exp (—i dt'H}(t')) O;(tl)] >,
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The time integration in the last expression runs over the contour. The expectation

value at time ¢; may be then expanded in terms of the interaction and functions
defined on the contour,

iGo(2t, 2%#') =< T [hs(e )} (27,)] >, 9
compare (6).

The result (8) for the operator expectation value is easily extended to the inter-
acting Green's function on the contour

iG(e,ty,258) =< T [Fu(a )Pl (2 #)] >

—<T [exp (-,- / °dt'ﬁf}(t')) bi(m )l 8)] >,

to

(10)

that can be expanded in an analogous manner to the expectation value. The contour
and Green’s functions were first used for the investigation of evolving quantum sys-
tems by Schwinger (1] and by Kadanoff and Baym [2], and later by Keldysh [3]. The
interacting contour Green'’s function is useful in carrying out partial resummations in
the expansion of expectation values, and it is further of interest on its own. The re-
striction of the time arguments to specific sides of the contour yields different standard
functions. Thus if arguments are restricted to one side of the contour, a chronological
or an antichronological function is obtained. These functions generally play the role
of propagators in the theory. Two other functions are obtained by restricting the time
arguments to the opposite sides of the contour, '

—iG<(2,t1, 2, 8)) =< Bl(, 8 )bu (2 t1) >, (11)



and
iG> (myty, #,8) =< Prl(e, )bl (2, 1) > . (12)

The function —iG< reduces to the 1-particle density matrix for equal time-arguments.
Thus densities in the configuration space and in momentum space may be obtained
from the function. The Fourier transform of the density matrix in relative coordinates
yields the Wigner function that corresponds to the classical phase-space density,

f(p; R, T) = fdre‘ipr < t/;L(R— r/2, T)t/;H(R+ r/2,T) >

| (13)
= fdre""pr(—i)G<(R +r/2,T,R - r/2,T),

While —iG< represents particles present in the system, the function iG> is a density
for adding particles to the system. In the so-called quasiparticle limit, of low scattering
rates, the time structure of the Green’s functions contains information about single-
particle energies,

In order to illustrate our points let us take the simplest case of a noninteracting
uniform system. In this case one finds for the functions Fourier-transformed in relative
coordinates, |

_—iG(,((p,w) = f(p)21r5(w - wp), (14)
iGg (pw) = (1 — F(p))27é(w — wp), (15)
ReGg*(p,w) = — o (16)

where wp, = -2”—:;
2.2. Green’s Function Equations of Motion

The perturbative expansion may be used to derive equations of motion for different
1-particle functions, including the interesting G<, as we shall now show. The equations
will have some important consequences.

The different terms in the perturbative expansion are usually illustrated with
diagrams in which lines represent Green’s functions and points interactions. Lowest-
order terms in the expansion of the contour Green’s function G in a system with
two-body interactions,

f' =3 [ dadyit @b V(e @) a7

are illustrated in Fig. 3. Generally the functions depend on initial-state correlations
indicated in the figure with boxes [4,5]. The perturbative series may be cast into the
form of an integral Dyson equation written here schematically

G = Gy + GoZG, (18)
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Fig. 3. Expansion of single-particle Green’s function.

and illustrated in Fig. 4. The function I is the self-energy that includes terms which
cannot be cut through a single line in the diagrammatic representation, see Fig. 5.
We shall drop the effects of initial correlations in the self-energy, assuming ty — —oo.
The integral equation may be transformed into a differential equation of motion by
introducing the inverse to the noninteracting contour Green’s function, :

Gyl Gy =1. (19)

For a nonrelativistic system we find

(z-g + 21;-) Go(,t, 2, t') = 6(z — )62, ), (20)

with the second §—function on the r.h.s. defined on the contour in time. Upon applying
the inverse Green’s function to both sides of (18), we obtain

GylG=1+1%G, (21)

and the equations for G< and G that are known as Kadanoff-Baym equations may
be obtained by restricting the time arguments of G in (21) to the opposite sides of the
contour. In this way we get for G<

- ,-L.!i G<(t, ') =_-/t dt (2>’- 22, t1)G (1, 1)
Py % y o 1 141 1 _

t'
- d12(5,1)(G” - GF)(t,1)

o0 oo
= f dty 8 (2,11)G<(t1,4') + ] dt1 £<(t,t1)G~ (41, 1),
-0 -0 (22)



Fig. 4. Dyson equation.

where time variables are now made explicit. The new functions appearing on the r.h.s.
of Eq. (22), so-called advanced and retarded, are defined with

GE(t, ') = +O(£(t - )G — Gt - #'). (23)

Proliferation of functions and the possibility for different representations of expressions
is characteristic for nonequilibrium quantum theory. The new Green’s functions play a
role of propagators in theory, similarly to G>®. The Fourier-transformed noninteracting
Green’s functions are GE(p,w) = 1/(w — wp * ie).

An interpretation to the self-energy ©< may be given, once the equation for G<
is solved in a formal manner. From (22) we have

(G5! -THG< =2<G". (24)
On combining the equations of motion for G< and G” we get
(G5t —THGt =1. (25)

With the time variables made explicit we find

G (¢, ') = f dt1dt2GF(2,41)2<(t1,12)G ™ (ta,t). (26)

O -0-D---

Fig. 5. Expansion of self energy.



In the above expression £< may be interpreted, up to a factor of —i, as the source
of particles, with G* representing propagation from the source. This interpretation
is supported by the representation of the self-energy in terms of the field source j,
compare (11),

—in<(t, 1) =< 7T (82)5 (1) >irrs (27)
with ; defined by
9 vy . .
(Za'l-é;)ﬂb—]. (28)

In (22) the last term on the r.h.s. corresponds then to production. The self-energy T
may be associated with particle absorption,

i (t1,45) =< 32071 (t2) >irrs (20)

compare (12), and the self-energy £+ may be identified with a nonlocal optical poten-
tial, cf. (22), consisting of a hermitian and a nonhermitian part,

Ip | (30)

1
R s o b L <1 5 RN
ImE" = 2(%2 iE<) 5

where T is hermitian and positive definite.
2.3. Thermodynamic Equilibrium

Particularly simple results follow when system reaches a uniform stationary state.
In that case the various functions depend only on the differences of time and space
variables, and may be Fourier-transformed in these differences. The functions —i%<
and i~ are clearly identified as the production and absorption rates, respectively, of
particles with a given momentum. The Kadanoff-Baym equations yield the equality
which expresses a balance between the processes of production and absorption,

(P, w)G” (pw) = T (p,w)G<(p,w). (31)

As £< may be obtained from ©> by replacing all Green’s-function factors G< with
G” and G” with G< [§)], it follows that in a stationary system the Green’s functions
must be related by a factor exponential in the quantities conserved in interactions,

G (p,w) = —LWHPU-RG<(p w). (32)

Further results are obtained after a bit of manipulation. Thus from (26) and (30)-(32)
we find, for v= 0,

—iG<(p,w) = —iZ%(p,w)|G* (p,w)I?

_ 1 P(paw) : (33)
AWM +1 (w - £ — ReTH(p,w))? + I (p,w)/4




The first factor on the r.h.s. is a Fermi-Dirac factor, while the second is the spectral
function of a Lorentzian form A(p,w). The function iG> may be expressed in terms
of spectral function as

iG” (p,w) = (1 - m) A(p,w). (34)

In the limit of infrequent scattering, the width I — 0, and the spectral function
approaches A(p,w) — 278(w — wp). In general, the width function equal to twice the
negative of imaginary potential, is related to the real part of potential by a dispersion

relation
o T(W)

THw)=X .
ReZ™ (w) Hr+ 2r w—w!

(35)

2.4. Problems with Interpretation

While the real-time theory generates many physically appealing results, there are also
numerous cases, typically in the higher order, when expressions obtained within the
theory are difficult to interpret. We shall show how these problems can be, in general,
resolved.

Let us first illustrate the nature of the problems with the simple result (26). The
different Green’s functions in the theory are not independent, e.g.

Gt =G°+G<, (36)
and we could represent the result (26) as
G< =GTI<G™ =G°TG™ +G<T<G". (37)

In the form such as on the r.h.s. the result for G< could not be given a physical
interpretation. In the higher order calculations, in the expansion of the rates )32,
many different terms appear simultaneously and it is not clear how to manipulate
these terms in order to obtain physically understandable results. An intuition from
the vacuum would generally suggest the use of chronological functions rather than
retarded, but that fails in the example above.

The lowest-order results for the rates are, though, usually easy to understand.
I shall first discuss the standard method for calculating the functions, see e.g. Ref.
[5]. The contour in Fig. 1 is divided into the chronological and antichronological
branches. The external time-arguments, ordered on the contour, are placed on the
opposite branches. The Green’s functions in the expansion with arguments on the
opposite branches are G< or G”, while those with arguments on one branch are G° or
G*. The functions G< and G~ represent the densities for the initial and final states
in the rates, while functions G° and G* contribute to amplitudes multiplying those
densities. For the production rate we get in this manner, in the lowest order, in case
of the potential interaction

—iD< = —iwiG< (-i)G<iG” iv, (38)
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Fig. 6. Diagram for self-energy and its representation as a squared amplitude
multiplied by densities.

with the respective diagram shown in Fig. 6. In (38) the densities are multiplied by
the amplitude —iv and the conjugate amplitude iv as physically expected.

We illustrate the difficulties in the higher order with a meson absorption rate in
nuclear medium, calculated in the quasiparticle approximation, assuming well defined
particle energies. The lowest-order contribution to the rate, :II> ~ G>G<, illustrated
in Fig. 7, can be expected small close to the meson mass shell. Subsequent contribu-
tions can be obtained by assigning in different ways the internal vertices of the diagram
shown in Fig. 8 to the contour branches, cf. Fig. 9, with the result

i =...[G” G*D*G* G~ (39q)
+G” G D< @G> G~ (395)
+G°G” D> G*G< (39¢)
+G*G° D° G G<]. (39d)

In the above D are the meson Green’s functions. Integrations and factors for the
vertices are suppressed. Interpretation of the expressions (39a) and (39d) is that they
account for the vertex corrections in the lowest-order amplitude. In (39c) we recognize
densities multiplied by the square of the Compton amplitude. The Compton scattering
is expected to contribute to the rate in this order. Problematic is the expression (39b)

Fig. 7. Lowest-order diagram for pion self-energy.



Fig. 8. Higher-order diagram for pion self-energy.

that cannot be identified as a component of a positive-definite rate within a finite
order of the perturbation theory. The density product multiplying the *vacuum-decay’
amplitudes in (39b), vanishes in the ground state, as shown below, but not at a finite
temperature or in a nonequilibrium situation. Taking a stationary system and the
Green’s functions Fourier-transformed in relative times, we find that the lines in a
diagram running to the isolated vertex of another contour branch, Fig. 9, contribute
a factor

G (w ~ W) D (W) G (w). (40)

Fig. 9. Different ways of cutting the contour diagram from Fig. 8, with a division
line between the branches.
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Fig. 10. Contour for calculating two-point functions.

In the zero-temperature limit (8 — oco) the function G< vanishes for w —w' > u, and
the functions G> and D< vanish for w’ > 0 and w < g, respectively. This can be seen
by examining equilibrium relations between the functions, such as (32), and for the
meson functions

D> (w) = ¢?* DS (w). _ (41)

When examining the equalities above, one finds that the product (40) always vanishes.
However, such argument cannot be made in the finite-temperature or nonequilibrium
case. An exchange diagram to that shown in Fig. 8 gives rise to similar problems.

2.5. Theory in Terms of Retarded Functions

The problems with amplitudes expressed in terms of chronological functions were rec-
ognized by DuBois and Bezzerides [6], and by Kobes and Semenoff [7). A solution
was found by myself [8] and independently by Kobes [9]. It consists in using retarded
instead of chronological amplitudes. For the purpose of rate calculation the contour
may be deformed into one shown in Fig. 10. Then the functions with all vertices on
a part of the contour associated with one external time are represented by the retard-
- ed amplitudes. The pathological disconnected amplitudes vanish. The result for the
~ meson absorption rate becomes

> =-..[@>(GD)" G~ G+ G*G> D> G~ G<+G*(GD)* G G<], (42

corresponding to the three cuts in Fig. 9 that leave the amplitudes connected. All
three terms have clear physical interpretation and can be properly combined with those
coming from an exchange diagram to that in Fig. 8. When the retarded amplitudes are
being used, the theory becomes explicitly causal. The theory generalizes the vacuum
theory outlined in Ref. [10).

Ability to interpret terms in the theory within any order of expansion allows for the
introduction of phenomenological amplitudes. It becomes possible to treat processes
which are by definition of a high order, such as many-particle interactions and the
bound-state production and absorption. In the quasiparticle limit it is found that the
single-particle rates may be expanded in the number of interacting quasiparticles

S =S+ 4., (43)
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Fig. 11. Amplitude for bound-state production.
with
iT3 (pyw) = f dp, ... dpg d ... dp',,|W+(p, Darer s B2

x6(p+p+...+ PP —-..—P) (44)
><15(w+eg+...+ey,—:s1 ...—ek)

Xfa.oo e =f) ... A~ fL),

where we suppress powers of 2x. The rate for two-body bound-state production in
three-body interactions is found to be of the form

iM<(pw) = [ dp, dpl dp} dgh 16" W 6(p + 91 — B}~ B~ 94)
X 8w+ e =& = & — &) AL~ ),

(45)
- with the amplitude illustrated in Fig. 11.
3. Kinetic Theory and Its Validity in Nuclear Reactions

3.1. Kinetic Theory

Kinetic theorjr follows from the real-time theory under the assumption of small tem-
poral and spatial changes in the system. In terms of scattering rates that drive the
evolution we must have

[=i2> -iZ<«Q, (46)

where Q stands for some characteristic energies. The single-particle functions are
Fourier transformed in relative coordinates,

G<(p,w,R,T) = / drdte P _ONG<(R+r/2, T +/2, R— r/2, T —t/2), (47)



compare (13), and, upon the introduction of transforms into the Kadanoff-Baym equa-
tion (25), the equation is expanded in small changes, with G</3T ~ I'G<. In the
lowest order we find

( —;:;—Refl"') G< =4, (48)
—1G<(p,w, R,T) = f(p, R, T) 276 (w — -2?% - ReE"') : (49)

Within the subsequent order of expansion in the changes, a semiclassical Boltzmann
equation is obtained from the Kadanoff-Baym equation,

_3i+3ep of  ep of _
8T ' O0p SR OR 3p

~iZ<(1 - f) —iZ> f (50)

where ep = p?/2m + ReZ*. On the Lh.s. of (50) the factor dep/Bp is velocity, the
factor —Oep/OR = —OReXt /AR is force, and the two terms on the r.h.s. are the
gain and loss terms, respectively. The absorption rate-associated with a two-body
scattering, obtained using (49) and a respective result for G>, becomes

i2>(p,w) = ]dpldp'dpi §(p+p —p —9}) 8(eptep, —ep —ep) [+ L(1-F")(1-f1).

(51)
The rate — %< has factors 1 — f replaced by f and conversely.

From the perspective of heavy ion collisions the Boltzmann equation has a definite
appeal. The Lh.s. of (50) describes a classical evolution of the phase-space distribu-
tion under the influence of the optical potential. The zero-temperature solution to
the equation, with the inclusion of finite-range in the potential, corresponds to the
Thomas-Fermi approximation often used to describe nuclei. Consequences of the in-
teractions at short distances are described with the squared amplitudes in the collision
integral. There are no essential limits on including more involved processes than 2-
body scattering in the collision rates, with photon or meson production. However,
prior to applying the kinetic theory to reactions, one needs to assess the magnitude of
the parameter I'/S}.

3.2. Applicability of Boltzmann Equation to Nuclear Reactions

The damping rate I is of the order of the absorption rate, when Pauli principle plays
negligible role,

Nei” @ — = 3= hnov, (52)

where '7¢ is the mean free-flight time between collisions, A is mean free path, v -
average speed, o - average interaction cross section, and n - density. Taking o =
40mb = 4fm?, v ~ 0.8¢c, and a normal value for the density n = ?.}fm's, we find
that I' ~ 90MeV. As the average nucleon energy in the center of mass in symmetric



collisions is, nonrelativistically, e = Ej,5/44, the damping rate can be comparable to
the c.m. nucleon energies for Ey,;/4 < 800MeV,

' 1

pladt (53)
Another characteristic energy, stemming from the energy dependence of the self-
energies, is /i times the inverse of interaction time,

)22 hv
R — 54
or> S TNN (34)

The condition of the smallness of I'/{2 becomes purely classical, that of the smallness of
the interaction time compared to mean free-flight time or interaction range compared
to mean free path, as k drops out,

1
=TNNRO ~ o (55)

At the late stages of collisions when densities fall, the conditions for the applicability
of Boltzmann equation are better satisfied than at the early stages.

3.3. Interpenetrating Nuclear Matter Model

Direct comparison of the results from solving the Kadanoff-Baym equations and the
Boltzmann equation can be made in the interpenetrating nuclear matter model. The
nuclear system is taken as uniform with nucleons in two separated Fermi spheres at
the initial time. As the time progresses, the system equilibrates. In the calculation
[11] the self-energy was taken in the direct Born approximation with potential param-
eters fitted to the NN cross section within the Born approximation. Figure 12 shows
the evolution of momentum distribution as given by the Boltzmann equation and by
the Kadanoff-Baym equations for the uncorrelated and correlated initial state, for the
initial separation between Fermi spheres corresponding to Ej.;3/A = 400MeV. Differ-
ences between the kinetic and quantum evolutions are observed when I'/Q is close to
1. In the momentum distribution from the Boltzmann equation the effects of energy-
momentum conservation in binary interactions are seen early on during the evolution.
These effects are suppressed in an evolution governed by the Kadanoff-Baym equation-
s. The approach to equilibrium is slower by about 30% in an evolution governed by
the Kadanoff-Baym equation than in that governed by the Boltzmann equation.

4. Applicability of Hydrodynamics to Nuclear Reactions
If the ideal-fluid hydrodynamics applied to nuclear reactions, the dynamics would be

entirely determined by the nuclear equation of state P = P(n,T). The mean free path,
A = 1/no ~ 1.8fm, is shorter than the radii of heavier nuclei, but the structures such
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Fig. 12. Contour plots of the evolving nucleon momentum distribution f(p, p*,1).
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as a shock wave, assumed to be of zero width in the hydrodynamies, take more than
one mean free path. A shock discontinuity might form in collisions at high energies
separating the stopped heated nuclear matter from the i incoming cold matter.

In [12] the nuclear-matter shear viscosity and heat conductivity were estimated,
and the stationary Navier-Stokes equations were solved for the shock wave profile.
The shock width was found to correspond to the equivalent distance in normal nuclear
matter of 5 fm at Eja 2 200MeV /nucleon, of the order of the radius of heavier nuclei,
and to even greter distances at lower energies. Thus, the ideal-fluid hydrodynamics
could not adequately describe the collisions.

The viscous-fluid hydrodynamics might, nevertheless, provide an adequate de-
scription, but only for the central regions at intermediate stages of the higher-energy
(but presumably not more than 1 GeV/nucleon) reactions. Hydrodynamics necessarily
breaks down during the expansion of the system, when A > 2R, as )\ = 1/no « R?,
and R o vt. An uncertainty in the precise specification of the freezout hampers ‘the
predictive power of hydrodynamics with respect to the final particle spectra.

The fact that an equilibrium may be reached in the central regions of collisions
may offset the inadequacies of the kinetic description in these regions. Once the system
finds itself close to an equilibrium, the fine details of dynamics that led to that state
cease to matter.

5. Transport Description of Nuclear Reactions

Primary objective of the description is to understand the results of collision experi-
ments. The sequence of events in collisions is simulated, with the comparison to data
constraining the underlying assumptions. A goal is to agsess the properties of dense
and excited nuclear matter created in the collisions, and in particular to determine
the equation of state of the matter, both at zero and and at a finite temperature. Of
interest is whether particles and their interactions are modified in the medium.
Parabolic curves in Fig. 13 indicate the possible behavior of the energy per nucleon
in cold nuclear matter, with the variation of density. The nuclei in their ground state
correspond to the minimum of energy. As the matter gets compressed in collisions,
one expects that the behavior with the density variation can be pinned down using
the observables from collisions. A parameter quantifying the stiffness of matter is the
compressibility constant K, first introduced to characterize the behavior of energy with
nuclear radius
K =R? -‘12— £ = 9n} 2 & F
dR? A dn 2 A
Outside of the nuclear physics, the stiffness is of importance for understanding the
mechanism of supernovae explosions. The matter is not only compressed in collisions,
but also excited to an energy higher than at zero temperature, by E*, ¢f. Fig. 13.
Following the excitation and compression the matter expands into the vacuum, in a
fashion that is most likely isentropic till freezeout. If initial entropy is low, the system
may cross the region of instability at densities lower than normal, where (OP/0n)s/a <
0. The dynamics in that region is likely related to the phenomenon of fragmentation

(56)
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discussed in the talks by Randrup and Remaud. Of interest are the growth rates for
unstable modes in that region. For low rates close to a critical point, the system may
shoot through the region not taking notice of the instability. High growth rates might
lead to a violent decomposition.

It should be made clear that in the experiments there is no direct control on the
density reached in collisions, excitation energy, degree of equilibration, or other factors.
The only existing probes are the emitted particles. Physical description must account
simultaneously for many different effects, each with its own uncertainty. Because of
the uncertainties, the physical scenarios differing in a particular aspect must frequently
differ by as much as 50% in a particular observable, in order to make one scenario more
plausible than other, on the basis of comparison to data.

5.1. Cascade Model

Essentially all microscopic models used to simulate the high-energy collisions are re-
lated to Eq. (50). The simplest microscopic model is the cascade model [13]. In
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this model the initial nuclei are treated as a loose collection of nucleons. During the
reaction the nucleons collide with the free differential cross sections at higher relative
energies, doyn/dQ « [t*]2. The total NN cross section is shown, as function of the
laboratory momentum, in Fig. 14. The effects of statistics are ignored in the cascade
model. The production of pions is described as a two-step process. First a A resonance,
an excited state of a nucleon, is created in a NN collision. The resonance then decays
into a nucleon and pion. Experimentally, the 7 production in NN interactions may
be primarily attributed to the A resonance excitations up to a bombarding energy of
~ 2.5GeV. Pion absorption may be described with a sequence of inverse processes.

The cascade model has been highly successful in describing the inclusive proton
data at high energies, but not at low energies see Fig. 15. The model has consistently
overpredicted the pion yields.

5.2. Extended Transport Model

From a theoretical standpoint and also from a standpoint of the comparison to data,
the description of energetic reactions between heavy nuclei improved considerably upon
introducing, by Bertsch, Das Gupta et al. [17,18], the effects of the Pauli principle and
of the self-consistent optical potential into the transport calculations. Apart from
phenomenology, these authors developed numerical methods being widely used.

Phenomenological parametrization of the potential for the transport calculations is
conveniently obtained by regarding the total energy as a functional of the distribution
function,

ep(r)= 2B 9
P58 (p,n) ~ 6f(p, 1)

(EXim 4 B79%) = ekin 1+ V(p, 7). (57)
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Fig. 15. Inclusive proton spectra measured in the reactions Ar + KCl at 800
MeV /nucleon [14] and Ar + Ca at 137 MeV/nucleon [15], compared to the spectra
calculated within the extended transport model [16] (panel marked THIS WORK) and

within the cascade model [13] (remaining panels). Data are indicated with points, and
calculations with histograms.

The potential energy may be taken in the form

An B (n\" C f 2
E,ot_fdrn [——'—'+"'_ (nﬂ) -+'ﬂo dP1+p2/A2 + DVen| + Ecour, (58)

with constants adjusted so that the volume energy has a proper minimum at the normal
density, nuclear surface profiles are adequately reproduced within the Thomas-Fermi
theory, and the effective mass at the Fermi energy has a desired value. In terms of the
constants the potential becomes '

n n\’ C f n 1 2
V—A;—;+B(no) -l-n0 dp1+p2/A2+Cn01+p2/A2+2Dv n. (59)
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Fig. 16. Comparison of the measured and calculated multiplicity of energetic
photons (E. > 30MeV) per primary pn collision {20].

For the discussion of relativistic single-particle energies see Ref. [19]. Figure 15 illus-
trates the improvement in the description of inclusive data at low energies within an
extended transport model, over that in the cascade model.

5.3. Gamma Production

Gamma particles serve as a sensitive probe of the reaction dynamics, since they do not
interact upon the production. Energetic photons, E, 2 30MeV in lower energy reac-
tions, may be assumed to be produced in independent proton-neutron (pn) collisions
when the collisions are infrequent, inhibited by the Pauli principle. (The proton-proton
system lacks a dipole moment.) Figure 16 compares the measured multiplicity of en-
ergetic photons in various reactions, normalized to the analytically estimated number
of first pn collisions, with the multiplicity from the Boltzmann model modified to de-

scribe v production [20]. Some degree of an agreement between data and calculation
is observed.

5.4. Intensity Interferometry

The proton spectra and ¥ multiplicity probe the process of dissipation of the longitu-
dinal motion in the reactions. Space-time dimensions of the emission zone at freezeout
may be accessed through the intensity interference. .

The technique utilizing pions relies on the fact that the probability density for
registering two identical pions with close momenta, P(p,, p,), differs from the product
of individual probabilities. When the individual probability densities are normalized
to 1, the probability for registering two pions coming from points m and m in the



Fig. 17. Emission of two identical pions from a source.

source is, cf. Fig. 17,
. L4 - } 4 . L ] P 2
P(py, p,) ; Bt iB3ma I e'EHe'P‘P'I

- _ (60)
= 2cos? ——-—--——9(ﬁ25 r2) =1+ cos (————-———q(ﬁh 1‘2)) R
where the first equality is due to the symmetrization of wavefunction, as appropriate
for Bose statistics, and where ¢ = p, — p,. Interaction between two pions is ignored.
For g = 0 the probability (60) is equal to 2. When g is large the probability P, averaged
over a range of r — ry, large compared to ¢/%, becomes 1. The drop from 2 to 1 occurs
over the range in q of the order of /R, where R is the size of emitting region, Fig. 18.

For a model Gaussian distribution of the emission points used in data parametriza-
tions,

) _
S o exp (-—.?;‘2—2) , (61)

0 ~h/R q

Fig. 18. Probability density P(q).
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Fig. 19. Distribution of the pion production points in the Ar + Ar reaction at 1.5
GeV/nucleon [21]. Beam is directed along the z axis.

the 2-pion probability density becomes

- T — —l4exp(_2
P(pi,p) = /dﬂ /de(m ) [1 + cos (h(f& m))] =1+exp ( TY ) . (62)
When in addition to the effect of a finite extension in space of the emission, the effect
of a finite extension in time is taken into account, with a distribution of emission times
taken in a Gaussian form, the result (62) is modified into

2 p2

2 p2 B, — E,)272
P=1+exp (_q2h2 )exp (—-(—1—2?;—)—7:-), (63)

where 7 is lifetime.

Figure 19 shows a distribution of the pion production points in the central and
peripheral cascade events at bombarding energy of 1.5 GeV/nucleon [21]. Figure 20
compares radii and lifetimes estimated experimentally using parametrization (63) to
those obtained within cascade model proceeding through the computation of emission
probability from the distribution of production and same parametrization as for the
data. Rough agreement between the experimental and calculated results is observed.

Two-pion interferometry is useful at high energies when pions are abundant. At
lower energies proton pairs may be used for assessing the dimensions of emission region.
While the statistics affects the two-proton probability density, of a relatively greater
importance become the interactions between particles moving towards the detectors,
Fig. 21. The difference in comparison to the pion case stems from the difference in
particle mass. For the same relative momenta of interest, set by the source size, the
relative proton energies and velocities are considerably lower than those of pions. In
a general case, the probability density for two emission points may be expressed as a
square of two-particle scattering wavefunction [22,23], and with the averaging as

P(pi.py) = [ dn [ dnsS(r, ) [2p,p,(m,m)" (64)
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Figure 22 compares the measured relative probability for detecting protons at
a given relative momentum, in the reaction of a nitrogen with aluminum nucleus at
75 MeV/nucleon, to that calculated [24] within the Boltzmann equation model using
distribution of points of last scattering [25]. The dip at low momenta is due to the
Coulomb repulsion between protons, and the enhancement at higher momenta is due to
the attractive nuclear interaction. The structure is more pronounced in the correlation
function for high total momenta than for low, indicating that the fast particles are
emitted from a smaller source than the slow ones. Semiquantitative agreement between
data and calculation is found. '

-
[~ ]

Fig. 21. Two-proton emission.
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5.5. Collision Dynamics

The rough consistency between various data and final results of transport model cal-
culations, makes plausible the history of the collisions within the model. Figure 23
displays the evolution of the particle distribution in configuration space and momen-
tum space and of a few variables in the Nb + Nb reaction at 1.05 GeV/nucleon [26)].
It is seen that, during the initial compression stage, the densities in excess of 2.5n¢ are
reached in the central region. Though it is arguable whether true equilibrium can be
reached and the particular system characterized in terms of temperature, the authors
have chosen to do so, finding T' close to 80 MeV during compression. Most pions are
seen to be produced during the initial period. The generated entropy stays essentially
constant during the expansion. As to the amount of entropy it may be accessed to
some extent experimentally.

If the system were equilibrated, then the entropy could be expressed in terms of
the ratio of the chemical potential to temperature

5 = [ drdp(flogs + (1 - Hlog(1 ~ 1)) = - [ drdp( ogf — 1

2 5
='/.drdpf(4—g;+2:;—T+l)=A(§—%).

This ratio is related in equilibrium to the ratio of 2-nucleon clusters deuterons to
protons,

(65)

Ns _exp(-%)
N, x exp (—%) ’ (66)
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and finally the entropy per nucleon may be expressed as

N,
1 ~390— logF:. ' (67)
It may be argued that such a relation as (67) should be also valid outside of equilibrium
[27]. The entropy per nucleon estimated experimentally from particle ratios and that
calculated in the transport models typically agree within one unit.
As can be seen in Fig. 23, the particles moving forward and backward in the
center.of mass are on the average deflected sideward during the collision. This can be
used to assess the nuclear compressibility.

6. Determination of Nuclear Compressibility

6.1. Pion Yields and Nuclear Compressibility

An early attempt {28] to determine the nuclear compressibility in the heavy-ion reac-
tions linked the excessive number of pions in the cascade model to the energy needed
to compress nuclear matter. Specifically, the reduction in the c.m. energy necessary
for making the cascade-model pion multiplicity match the observed multiplicity, Fig.
24, was identified (28] with the change of energy at T = 0,

AFE = E(n) — E(no). (68)

With the density taken from the cascade model, a high value of the compressibility
constant K ~ 380MeV was deduced.

It may be mentioned that in a consistent treatment the potential energy Epot
should have been used in (68) rather than E, leading to a higher value of K. (This is
because the potential energy is the one missing from the cascade model.) In any case,
once the potential energy was incorporated directly into the transport models, a weak
sensitivity of the pion multiplicity to the compressibility became apparent [17). We
shall later get back to the pion production and discuss the actual reason for the pion
excess in models.

6.2. Sideward Flow

Recent attempts were made to determine nuclear compressibility from the sideward
deflection such as in Fig. 23. Experimentally the deflection is quantified by evaluating
the mean transverse momentum component per nucleon in the reaction plane, as a
function of rapidity, Fig. 25. In a nonrelativistic system the rapidity y coincides with
the velocity along the beam axis in units of c.

General experience from the comparisons to data was following. The cascade
model failed to describe data on sideward flow. The transport models with an optical
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potential V = V(n) could describe the data, if the dependence of potential on den-
sity was strong, i.e. K was large. However, from the nucleon-nucleus collisions the
optical potential is known to depend also on momentum p. When such dependence
was incorporated into the model calculations, cf. Eq. (59), it became apparent that
data could be described using a potential with a strong momentum dependence and
a weak density dependence [30]. With this the situation went into a stalemate. The
dependence of potential on momentum was actually never demonstrated in heavy ion
collisions. ‘

Quite recently we have been studying with Pan [31] the dependence of flow on the
impact parameter for the different parametrizatons of optical potential. In comparisons
to data we have used the value of the slope of momentum per mass at midrapidity
[29,32], cf. Fig. 25,

_d<p*/m>

F ,
dy Yo

(69)
in order to avoid the uncertainties associated with fragmentation. Figure 26 compares
our slopes to the slopes determined in the Plastic Ball [33] and DIOGENE [32] exper-
iments. Prior to the slope calculation, emitted particles in the model were subjected
to detector-acceptance filters. It is seen in the figuré that the Plastic Ball data can
be described either by using a potential that yields a stiff equation of state and is
momentum independent, or by using a potential that yields a soft equation of state
but is momentum dependent. This conforms with past experience. Contrasting with
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Fig. 25. Mean transverse momentum per nucleon projected onto reaction plane
as a function of the normalized center of mass rapidity for Nb + Nb reaction at 400
MeV /nucleon {29].

past experience, however, the DIOGENE data may only be described using a momen-
tum dependent potential. The effect may be understood by examining Fig. 27, and
considering detector acceptance. In the figure we show the values of average cosine
with respect to the reaction plane as a function of transverse momentum, of the par-
ticles emitted in forward rapidity region, for different optical potentials. Predictions
differ in the region of high momenta, with particles more focussed in the vicinity of the
reaction plane for the momentum dependent than for the momentum independent po-
tentials. The DIOGENE detector setup has poor acceptance for particles emitted with
low transverse momenta, while the Plastic Ball setup has good acceptance. Clearly,
the poor acceptance enhances the flow values for the momentum dependent relative
to the momentum independent potential. Using different sensitivity of the data sets
to the density and momentum dependence of optical potential we put [31] limits on
compressibility 1656MeV < K < 220MeV.

7. Pion Production

Let me now concentrate on the issue of the excessive pion number in the cascade and
other dynamic models. The resonance A, formed in the processes of pion absorption
or production in the models, N + N & N + A, A & N 4 x, is fairly broad. It is
centered at mass mac? = 1232MeV > (my + my)c? = 1077MeV, and it has a width
of I'a = 117MeV at m ~ ma. The spectral function of the resonance
Ta
Aa(m) = (m—ma)?+T% /4’
is illustrated in Fig. 28. In calculating the pion production and absorption rates it has
been possible to use data parametrizations for the cross sections oyy—na and

(70)
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ONx—a, 88 well as for the width. The cross section oya—.yn had to be deduced from
inverse process and the detailed balance relation of a standard form was used,

1piw

8 ph  CVN—Na: (71)
8PNa

TINA=NN =

The factor -},- is associated with spin degeneracy and symmetry. In the work [34] with
Bertsch, we have determined, however, that relation (71) which would have been valid
for stable particles, cannot be used for broad resonances.

The issue is that, in the final-state energy-density for the A production, the spread
of A in mass (i.e. equivalently energy) must be included. The spread does not appear,
though, in the density for absorption. With [Myx—na|? denoting a squared matrix
element for the transition, averaged over spin directions, and the process considered in
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the center of mass, the A-production cross-section takes the form
1 ——
ONNoNA = p— / dpndpadm|MynNalPAa(m)8(py+Pa) S(E—en —ea). (72)

The spin factors and factors of 2x are suppressed. The A-absorption cross-section is,
on the other hand

1 e
OCNA—-NN= m fdeldeleNAﬂNN_I26(pN1 + Pnz) 5(E —€EN1 — €N2)- (73)

Because of the invariance under time and space reflections, the processes of production
absorption share the matrix elements squared,

IMNnN—Nal? = Mya-nn]?. (74)

Clearly, by inspection of (71)-(73) and the role of Aa, the relation (71) cannot be
exactly satisfied when the spectral function is broad. At low energies, such as close to
the equilibrium in heavy ion collisions, only a part of the spectral density is integrated

AA +

mN-rm‘_"“ Ma m

Fig. 28. Spectral function of A resonance.
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out in {72), resulting in a reduced production cross section. However, there exists no
physical reason for the absorption cross section to be reduced. On the basis of (71) one
would conclude that the absorption cross section should be reduced, too. Generally, the
resonance absorption is stronger than predicted by (71). On assuming a dependence
of matrix element squared on total energy, but not on mass of the produced A, a new
detailed balance can be derived [34] from (72)-(74),

1pkn ONN—NA
8pva [E7™ dm! Ap(m')plya

ONA—NN = (75)

This relation is consistent with the relations between particle distributions in equilib-
rium, unlike (71).

Pion multiplicities obtained within cascade model using old and new detailed
balance relation are compared in Fig. 29. Even in a relatively light system such as Ar
+ KCl, the new balance relation reduces by more than 50% the discrepancy between
model predictions and data.

It should be mentioned, that while pion multiplicities get under control with the
new relation and the inclusion of the mean field and Pauli principle in calculations, this
is is not the case with pion spectra. At low c.m. energies an enhancement is observed,
similar to that in ultrarelativistic collisions, cf. talk by Bertsch, which transport model
fails to describe, see Fig. 30. A discussion of the issue will appear.
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8. Beyond the Standard in High-Energy Reactions

8.1. Backward Proton Scattering

One of the phenomena that defies the standard description of high-energy reactions
as a set of binary collisions, is the phenomenon of backward scattering. When the
nuclei are bombarded with high energy protons, and observations are made under a
backward angle in the vicinity of 180°, the proton spectrum is found to extend beyond
the kinematic limit in the interaction with single nucleon. With the products of binary
collisions being focussed forward, sequences of collisions cannot efficiently populate
backward momenta. The spectrum extends well beyond the limit of fragmentation
as can be seen in Fig. 31. With a rise in the bombarding energy, the spectrum first
increases, and then saturates. The data shown correspond to the limiting region of
bombarding energies, The spectrum weakly depends on the backward angle.

The saturation of the spectrum and weak dependence on angle suggest that target
features play a role. With the kinematics indicating an interaction with more than
target nucleon, I have examined [39], as a possible explanation of the phenomenon, the
process illustrated in Fig. 32. In the process two target nucleons interact. Thereafter
one of the nucleons is emitted and measured, while the other one interacts with the
projectile. The last interaction puts the entire process on shell. The rate for backward
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cross section from fragmentation. :

production from the process takes the form, cf. (44),

2
i (0,8) = [[dpsdmad-- ) o [ o e

x8(p'+pi+p—p—-)S(E' +2m-B)—E—...)

5 2
=ONN jdhdpzf(l’l )f(P2)|t+|2 (p1 + pq :';)2 - mz]
X (2(m — B) — pf - p; — E +p%).

(76)

The two squared transition matrices in (76) correspond to the two discussed interac-
tions. The functions f are Wigner functions of target nucleons. Dots indicate variables
corresponding to unobserved particles in the forward direction. Summation over chan-
nels and integration over the momenta of unobserved particles give rise to the NN cross
section on the r.h.s. of second equality. The square of the propagator of a nucleon in
a virtual state in (76), accounts for the finite time the nucleon can stay off-shell before
being struck by projectile. Resulting cross section for the backward emission, obtained
by integrating the rate (76) over time and averaging over different straight-line pro-
Jectile trajectories, is shown in Fig. 31 with a dotted line. Additional contributions to
the cross section come from



Fig. 32. Collision with two target nucleons.

interactions with more than two target nucleons. The sum is indicated in the figure
with a solid line. Probability for finding the second nucleon in the vicinity of the first
in (76) is proportional to a local density. Rates for processes with more target nucleons
involve additional powers of density. This leads to a rather strong dependence of the
backward cross section on target mass, Fig. 33."

~ 8.2. Few-Body Collisions in Heavy-Ion Induced Reactions

Unlike in proton-induced reactions at high energies, the sequences of two-body colli-
sions in heavy-ion induced reactions, at lower energies, are expected to populate the
edges of single-particle phase space with same efficiency as the few-body collisions. An
extensive investigation of the effects of few-body collisions on observables, has been
carried out by Batko, Randrup, and Vetter [40].

In their calculation, a two-body collision with a cross section ¢ turned into a
three-body collision when a third particle was present [41] within a distance of /o /T,
and into a more-body collision when more particles were present. The available phase
space was filled uniformly. At higher energies, when the role of Pauli principle on
collisions was diminished, the fraction of few-body collisions in the calculations became
quite substantial, see Fig. 34. Despite of that, and despite of different evolution [40],
compare Sec. 3.3, the final observables came out very close to the observables from the
calculations with 2-body collisions only. This concerned such observables as backward
and subthreshold yields, flow variables, and rapidity distributions, ¢f. Fig. 35. On
an opposing end, Bonasera and Gulminelli [42] claim, that the effects of few-body
collisions on observables are strong,.
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9. Light Composite Particle Production

9.1. Deuteron Transport Equation

As a last topic I shall discuss the production of light composite particles in the energetic
nuclear collisions, with deuteron taken as a simplest example. The deuteron Wigner
function is related to the 2-nucleon Green’s function G5. In the limit of low scattering
rates the function G5 may be represented as [35]
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Fig, 34. Beam-energy dependence of the number of N-body collisions in the
simulation of Ca+Ca at b=0 [40].
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where R = :1'(31 + @+, +a4), r= 2 —2;, the spin and isospin indices are ignored, ¢4
and fq are the deuteron internal wavefunction and the Wigner function, respectively,
and the dots on the right hand side indicate contributions to the Green’s function from
2-nucleon continuum. Equation describing the evolution of deuteron Wigner function
follows, in the limit of slow spatial and temporal variations, from the quantum equation
for G5, and takes the form, compare (50),

dfa + Oes Ofs  Oea 0f4
oT Op OR OR 9p

=K<(14 fa) - K fa, (78)

where K% are deuteron production and absorption rates.
Within the theory [35] it is found that the deuteron rates are related to single
particle expectation values,

K< = f drdv'd3o < Dh(eh, u(en,t) >< Py, )u(ant) > vés,  (79)

where v is NN interaction. The absorption rate has the order of operators in the
expectation values inverted. In (79) a quasiparticle expansion may be applied. The
lowest order, illustrated in Fig. 36(a), corresponds to two nucleons, neutron and proton,
joining together and making a deuteron. While this is not possible in the vacuum, the
process can, in principle, occur when the nucleons are in a nuclear mean field,
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Fig. 36. Expansion of deuteron production and absorption rates.

but the rate is low. Terms of subsequent order in the quasiparticle expansion, Fig.
36(b), correspond to two nucleons colliding, one being then left out as a spectator, and
other, still off-shell, joining with a nucleon from vicinity to make a deuteron. When
contributions from different processes with three quasiparticles in the initial state, such
as just described, are summed up, they give rise to the rate for production of the form,
in Wigner representation,

Kp)= ), f dpndp,dp,dply |IM™PN=-Ni§(p 4 py — p, — p, — D) (50)
N=n,p

x 8(eq -I- EN — €p — €y — €iv)fpfnf1'v(1 - fn).

The average squared matrix element is identical to that for breakup, and is proportional
to the differential cross section for breakup, respectively.

The set of equations for nucleons and deuterons yields reasonable wide-angle multi-
plicities and a good description of spectra in the high-energy collisions of heavy nuclei,
see Fig. 37. In [43] the transport description was extended to include the A = 3
fragments.

9.2. Effects of Transverse Expansio.n

In the transport simulations of the head-on collisions at bombarding energies of the
order of few hundred MeV, carried out with Pan [43], we found that a region with
dense and excited matter in the center between nuclei, expands with time predom-
inantly in transverse directions. According to simulations, the energies and angular
distributions of emitted light fragments could be used to identify and quantify the
transverse expansion.

Figure 38 shows the evolution of the density of particles projected onto the reaction
plane, in the AutAu collisions at 250 MeV/nucleon. The transverse expansion is
clearly seen. Figure 39 shows the measured {44] and calculated mean energies of light
fragments emitted towards 90° in the center of mass in the collisions. The energies
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rise with decreasing impact parameter. The transverse proton energies in the very
central collisions exceed, in fact, the energy per nucleon available in the center of mass.
Besides the rise of energies, significant differences between energies of various fragments
develop with decreasing b. Within the simulation we can analyze in detail the origin of
differences. We find that, prior to a freezeout, a local equilibrium is established in the

collisions, and differences between energies of fragments with different mass are due to
the expansion,

Au + Au (250 MeV/nucleon)
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Fig. 38. Contour plots of particle density integrated over the normal to reaction
plane in Au+Au collisions at 250MeV /nucleon.
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2 v?
< E >o00= gm—%—z + gT - gAM;—J'Z + gT = gAEf,'J + -g-T. (81)
Additional differences between fragments with different charge develop when fragments
move away from the reaction region, due to Coulomb interaction. When comparing
our results to data [44], consistency is found for the proton and helion energies, but
not for the triton and deuteron energies. Two new data sets are being analyzed right
now, hopefully shedding more light on the situation.

10. Conclusion

Let me conclude by listing few interesting open problems. For one, it is important to
find out whether the results on equation of state can be confirmed by other researchers.
If this were the case, possibilities for a direct investigation in the experiment of the
effects of momentum dependence would be open, and possibly features of the equation
could be more narrowed down. With a strong momentum dependence, the issues of
rate renormalization may need, finally, be dealt with seriously, even at high energies.

The mechanism of fragmentation still remains open. An interesting new quantal
approach with fluctuations, that may describe adequately some physics, is the Fermion
Molecular Dynamics. Analysis of data on fragmentation could benefit from variables
identifying a critical behavior.

The low-momentum enhancement in pionic spectra represents a mystery. A peak
is observed in the spectra at low and high energies, and further in heavier and lighter



systems, where, supposedly, the dynamics should be different. Possibly related in some
way to the peak is the issue of virtual vs classical propagation of the A resonances.
.Well below the center of the resonance, the time for A existence becomes limited by
the uncertainty principle. Generally, transport involving virtual particles may be of
essence at very high energies, since particles can live macroscopic times due to the
Lorentz dilation.

Concerning few-particle interactions, interesting are new data on antiproton pro-
duction in proton-nucleus and deuteron-nucleus reactions. Yields differ by factor of 50
in the subthreshold region, and the standard models can explain only difference by a
factor ~ 5 [45].

As to the general quantum nonequilibrium theory, of importance is solving the
problem of a simultaneous renormalization of the amplitudes and densities, with a
regard to conservation laws. Densities need to be formulated for transient stages of
dynamics when neither asymptotic states cannot be used, nor features of a stationary
limit can be exploited.
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