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Abstract

We cdculae the ¢-meson propagator at finite temperature at the one-loop
order. The red and imaginary parts are dudied separately in full kinematic
ranges. From this activity we investigate how temperature affects such things
ag decay widths and disperson relations. Prom here we estimate the therma
rate of lepton pair radition in a hadron gas proceeding through K+ K- —

¢ = £t~ and 1p —» ¢ — £3{~. We find severd interesting things. Prom the

disperson reations we learn the effective mass caculated this way increases
with temperature as does the partid width, but only dightly. At T = 200
MeV, the mass increases by ~ 4 MeV and the partia width increases by 23%.

Polarizations are indiginguishable for practica purposes.
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L. INTRODUCTION

Attention is focused nowadays on problems relating to the physics of ultra-relativistic
heavy-ion collisions where the primary purpose is to establish whether or not one can make
a quark-gluon plasma (QGP). Regardless of the outcome of this query, the hadronic phase
is present and it behooves us to continue thought and calculation regarding hadronic mech-
anisms in this extremely hot environment. It is clear that hadronic properties are modified
at finite temperature. But to what extent such modifications are noticeable and for which
hadrons this becomes important is not so easy to say. By studying these modifications we
may be able to better understand what is happening as temperatures approach that which is
expected to give a phase transition to the chirally symmetric QGP phase. There have been
several studies of meson masses at finite temperature. Some employ lattice QCD (quantum
chromodynamic) methods [1,2], and others use QCD sum rules [3,4]. Still others have used
effective Lagrangian methods [5,6]. Our choice is the latter which uses finite-temperature
field theory.

There are more than a half dozen hadrons with masses less then ~ I GeV. At the upper
end of that range sits the ¢-meson. It is a well known two-kaon resonance that is less
abundant in these heavy-ion collisions than ps or their decay products, the pions. On the
other hand, the invariant mass distribution of lepton pairs is expected to show a noticeable
structure near the ¢’s peak [7] so it is important at some level. Its finite temperature
behavior including two-kaon annihilation into lepton pairs has been studied [5]. Deviation
from vacuum behavior was concluded to be quite small. Yet, this was in some sense not
surprising since the kaons are 3—4 times more massive than temperatures of interest. Again,
the ¢-meson decays into two kaons with highest rate but only somewhat less often decays
into a mp combination. The combined mass of the 7p system is smaller than the two-kaon
threshold but not by enough to argue that the rate is sizeable merely due to phase space.
The pion in the 7p decay of the ¢ might be more strongly affected by temperature than the
kaons since it much less massive. Of course, the opposite argument applies to the p being
more massive than the kaons, so a prioriit is not clear what will happen to the whole system.
The questions we attempt to answer are the following. How does the 7p decay possibility
affect the #’s zero and finite temperature behavior? And, how does it affect the dispersion
relation, i.e. does the effective mass remain the same, go up or down? The interesting role
played by ¢ mesons and their lepton pair decay channel has previously been pointed out in
the context of high energy heavy ion collisions [8].

Our paper is organized in the following way. In Sec. II we briefly discuss the one-loop
kaon diagrams’ contributions to the ¢ self-energy. They have been computed and appear
in the literature [5]. We then evaluate the 7p loop’s contribution and add it to the kaon
diagrams. With all these, we have an improved ¢-meson self-energy. It is a simple task to
get from their to the full propagator which we present in Sec. III. Many properties of the
resonance are contained within the propagator. Among them, we present effective widths and
masses and dispersion relations. We finish with a short discussion on the thermal dilepton
emission rates which are evaluated from knowledge of the finite temperature behavior of
the imaginary part of the propagator. Finally, in Sec. IV we summarize and conclude that
temperature effects are quite modest in this improved ¢-meson propagator.



II. $-MESON SELF-ENERGY TO ONE-LOOP

Vector mesons interact in a renormalizable fashion with a conserved current. The full
Lagrangian for K-¢ dynamics is

1 1 1 , 1
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where K’ is the complex charged kaon field, ¢, = 8,6, — 8,4, is the ¢ field strength tensor,
and D, = 0, — igsxk P, is the covariant derivative. This gives rise to two diagrams which
contribute to the self-energy at the one-loop level shown in Figs. 1a and 15. We go further
by including a ¢-p-7 interaction given by the Lagrangian [9]

Lint = gq&pﬂrepvaﬁa#?ﬁyaapﬁ -, (22)

where the complex charged rho and pion fields appears as pf and . This term gives the
diagram shown in Fig. lc. The kaon bubble and tadpole diagrams have been evaluated (by
one of us along with J. Kapusta) and appear in the literature [5]. So we discuss only the p
loop diagram. Its contribution to the self-energy in Euclidean space is

dp Iw
Huv k - 3 2 . T 2.3
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where
I* = [(k-p)* — P*E*|8" + P RE* + EPp*p” — (k- p)[p"K" + K*p"). (2.4)

The factor of 3 accounts for a sum over loop isospin. In the imaginary-time formalism,
the indices run not from 0 to 3 but 1 to 4. The fourth component of the four-vectors are
Matsubara frequencies, py and k4 = 22T x integer.

As with all imaginary-time calculations, the zero temperature piece naturally separates
from the T' dependent piece. We have evaluated the expression in Egs. (2.3) and (2.4) at
T = 0 using dimensional regularization {10]. The rest, which depends on temperature, is
obtained by converting the discrete sum over frequencies to a contour integral. We find it
convenient to present the zero temperature results separately. For this m-p loop we obtain
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at T =0, with
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and where C is a renormalization constant to be determined later. Then at T > 0
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where wy = {/p? + mZ and w, = /p? + m2. We have evaluated these components separately
and then checked for transversality as required by current conservation.

IIl. FULL PROPAGATOR

We next let time become real which changes the space-time from Euclidean to
Minkowskian. The metric is now + — —— for ¢ = 0,1,2,3. We can decompose the
self-energy into scalar functions times longitudinal and transverse projection tensors defined

to be
P’%O=P'%i= ';.‘Dzor
Py =89 — ik [k,
PE = kMR kP — g™ — PR, (3.1)



The decomposition reads

n* (k) = F(k)PL" + G(k)P§" . (3.2)
Utilizing this, we have
K
F = _EH , G = A, (3.3)

where TT** and A are given by Eqs. (2.7) and (2.10) with ¢ky = ko. Inner-products are
again Minkowskian, e.g. k? = k2 — k2. The all-important connection with the full and bare
propagator comes next, it is

™ = (D)™ —(D§")™. (3.4)
Therefore, the full §-meson propagator can be written as
P PR il 4
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The first two pieces represent the longitudinal and transverse collective excitations of the
resonance at finite temperature and in general, are different. To learn just how different
they are for T > 0 is now a numerical task which will be discussed later.

In the vacuum there is no preferred rest frame and the scalar functions F and G become
equal. After dimensional regularization and renormalization we arrive at finite results
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where now the radicand is
R= (1 ) mﬁﬂ;mfr)z e, (3.7)

and the invariant mass of the resonance is M = \/k? while its energy is £ = v M2 + k2 in
the rest frame of the hadron gas. We determine the renormalization constant by imposing

the physical-mass condition, namely, Re Fioo(k* = m3) = 0. It determines the constant to
be
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which use yet a different radicand
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At finite temperature the functions F and G have—in addition to the vacuum piece—a piece
due to the matter F' = Fypc + Fias and G = Grac + Grat, Where
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and

where

and

It is difficult to do little else with these expressions except numerical analyses.
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A. Effective widths, masses and dispersion relations

1 [—(E?+ kB (M2 —m? + m?)

W

4k?

(B*+ k%) ((M? — m2 + m2)? + 42E?) 2P

PP(E? 4+ k) + Zmﬁk2

32pk|?

8plk|
w, EM?(M? — m2 + m?)

8plkl?

) atey + i3,

a6, - iver]]

B. = 1 if”lowszpsp'high
" 0 otherwise

0 otherwise

{1 if 10w <2< Y high

1+

M? M?

2 _ 2\ ? 2
m; mp) _4me

_ 1k (1+

(14

M? T M?

"

(14

2 _ym2\? 2
my—mz\" 4m?
M? M?

(1+

I3 4

m2 —m2\*® 4m?
M2 T M?

2 m2\? 2
ms mp) 4m?2

+|k|(1+

— |k| (1+

+|k|(1+

~ 2plk|

1

T

M‘Z

L

M2

2

m, —m;

M2

M2

ePue — 1

mi —m

m2 —m

2 2
mp—mﬂ

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Decays are of course observable. In the Particle Data Group tables one has experimental
values for free-space partial and total decay widths. They provide calibration for our calcu-
lation since the partial decay width can be related to the imaginary part of F (or G, since
they are the same in vacuum) as follows

Tjrnp = *-ni—¢1m Frac(k® = m3).

(3.16)



This uniquely determines the value of g4,,. It is indeed quite reassuring that the decay
width calculated this way is precisely what one gets from an S-matrix approach for the net
decay into a mp combination, namely,

1 mggipw 1 2 2 232 2 9 3/2
Losor = o4 (4—11_ fn;g [(mp —m, — m¢) - 4m,rm¢] . (3.17)

Note that as we are using it, g4,r has units of inverse mass. The relevant formula for the
two-kaon decay is

/2
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Throughout this work we have used m, = 139.6 MeV, mg = 493.6 MeV, m, = 768.1 MeV,
mg = 1019.4 MeV, the full width I'y;= 4.43 MeV and partial widths T'y_xx /Ty = 49.1%
and Ty_pr/Ty = 12.9%. Equation (3.17) determines m3g}, /47 = 0.29, while Eq. (3.18)
determines g3y x /47 = 1.65.

In Figs. 2 and 3 we show —~Fj and using k = 0.05 GeV/c and k = 0.75 GeV/c. In each
plot, three curves are shown. Solid, dashed and dotted curves correspond to temperatures
T =0, 100 and 200 MeV, respectively. Below the two-kaon threshold the mp contribution
stands alone and is noticeably affected by temperature. The imaginary part of G behaves
almost identically to F, so we do not show it. Equation (3.16) also determines an effective
width for nonzero temperatures with the replacement

Foac = F = Fope + Frpat (3.19)

This effective width is now dependent not only on the invariant mass of the resonance, but
separately on its three-momentum. It is also polarization dependent since instead of F we
might have used G. In practice, this difference is not noticeable. So using a small value of
momentum we plot the effective widths in Fig. 4. The 7p channel nearly double its (zero
temperature) value at T = 200 MeV. Since the two-kaon channel is larger and is affected
less by temperature, the sum of the two channels changes only modestly. The value for the
width of the sum of both channels goes from 2.75, to 2.84, to 3.06 and finally, to 3.39 MeV
at temperatures 0, 100, 150 and 200 MeV, respectively.

An effective mass can be determined from the pole of the propagator. It shifts somewhat
due to the presence of matter since F' and G have nonzero real parts. These parts are in
general different thereby introducing a polarization dependence. But in the limit & — 0, F'
and G become equal and one can speak of an effective mass. Formally, it is the value of kg
which satisfies

k3 —m3 — Fr(ko, k| — 0,T) = 0. (3.20)

We extract it from our numerical results. In Fig. 5 we show this effective mass minus
the vacuum mass as a function of temperature: It rises with rising temperature. At T =
200 MeV, the effective mass calculated this way increases by ~ 4 MeV. For finite three-
momentum the situation is more complicated so we show the K+ K~ and the 7p contributions
to the real part of the function F at two different momenta in Figs. 6 and 7. The mp results
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are distinquishable from the two-kaon results since they extend below the two-kaon threshold.
For each, three curves are shown: T = 0, 150 and 200 MeV temperature correspond to
solid, dashed and dotted lines, respectively. The noteworthy features are these. The 7p
contribution is increased at finite temperature for masses ranging from threshold to roughly
1.3-1.6 GeV (depending on the temperature and momentum) where it becomes reduced
with finite temperature. Temperature effects are quite small here. Kaon contributions are
strictly increased at finite temperature for all masses. These increases and reductions have
competing effects on the ¢ effective mass.

Since F and G are (very) slightly different, a notion more general than effective mass
is needed. So next we consider the relationship between energy and momentum for each
polarization, i.e. dispersion. Evaluation of the dispersions requires us to find solutions to

k2 = b+ m2 + Fa(ko, k|, T),
k2 = k? + m2 + Gr (ko, k|, T), (3.21)

for given values of |k| and T. They determine the longitudinal and transverse dispersion
relations w} and wf. We present them in Figs. 8 and 9 wherein the solid curves are for T’ =
0, while dashed and dotted curves correspond to T = 150 and 200 MeV results, respectively.
The effect is small but the direction of it is quite clear. We see an increase in the effective
mass with temperature. The transverse polarization effects in Fig. 9 are just slightly greater.

B. thermal dilepton emission rates

The electron-positron production rate has been shown to be related to the imaginary
part of the retarded photon self-energy [5]. Since vector-meson dominance suggests that a
virtual photon converts first to a neutral vector meson which then couples to other hadrons,
the photon self-energy can be simply related to the imaginary part of the vector meson prop-
agator. Derivational details of this equivalence and the formulas can be found in Refs. {11]-
{14] and [5]. We merely state the formula for the production rate for arbitrary momentum
configurations proceeding through the ¢-meson
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+ [2M2 — g* + (g k)] (3.22)

where for convenience we have used ¢* = p{ — p? and momentum conservation forces
k* = pi + p”. The rate for ete~ production below the two-kaon threshold is obtained from
Eq. (3.22) with g4 adjusted to give the right ¢ — ete~ decay. For invariant masses above
threshold, one adjusts §, to achieve continuity in the rate at M = 2my. Here the real and
imaginary parts of F' and G have contributions from both kaon-loop and 7p loop diagrams.
Though we do not show them, the rates for the individual channels are (branching ratio)
fractions of this total rate. For example,
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for longitudinal polarizations. Then the same expression is used with the function F replaced
by G for transverse polarizations.

As mentioned several times already, dielectron spectra depend on polarization. For
example,
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While at first this seems like a potentially useful tool, we find it is a tiny effect for these
processes. Shown in Figs. 10 and 11 are the (sum of the two) rates of dielectron produc-
tion at two different total momenta & = 0.05 and 0.75 GeV/c. The solid curve uses a
temperature independent form factor and the longitudinal and transverse contributions are
presented as dashed and dotted lines, respectively. Keeping with the above statement about
polarizations, we note that though they are truly distinct especially at higher momentum,
one probably cannot expect to utilize this difference in experiment. Another way to think of
the effective mass is that it is the average invariant mass of all back-to-back kinematically
allowed configurations for the dileptons. If one imagines doing such an average in Fig. 10,
one can see the rise. Both the kaons’ and the mp’s contributions tend to raise the effective
mass.

IV. CONCLUSIONS

It is not possible to overstate the importance of understanding hadronic processes whitin
hot matter. Asthe temperature rises above say, 150 MeV and approaches 200 MeV, hadronic
interactions may well deviate drastically from vacuum behavior. These modifications are
quite important both from theoretical and experimental points of view. Open questions
abound with regard to the approach to chiral symmetry restoration and deconefinement
phase transition. A solid understanding of hadronic physics is essential for making progress
in this direction. We have studied how temperature affects properties of the ¢-meson. By
evaluating a new contribution to the one-loop self-energy, we have improved estimates for
the decay width, dispersion relations or effective mass, and finally, for the rate of dielectron
production with invariant masses near the ¢.

We have learned that within this type of modelling for the relevant hadronic degrees of
freedom and their (strong) interaction, the effective mass of the ¢-meson is nearly temper-
ature independent below ~ 50 MeV. Above this, it shows slight increase: It rises by 0.42,
1.55, and 4.59 MeV at temperatures 100, 150 and 200 MeV, respectively. This rise is mostly
due to the kaon contributions, although the effect of the mp channel is to move the mass in
the same direction. These results for the effective mass contrast with some QCD sum-rule
calculations at finite (temperature and) density [15], where a large decrease of the ¢-meson
mass at T # 0, e.g. ~ 100 MeV reduction at T = 175 MeV. However, it is vital in such cal-
culations to treat the spectral-function side of the sum rule consistently with the change of



the condensate appearing in the operator product expansion. Moreover, the absence of the
O(T?) mass shift is quite a general result on the basis of chiral symmetry [16,17). Koike [18]
further points out in the context of QCD sum rules for the vector mesons at finite density
(in nuclear matter) that the medium (density) dependent part of the correlation function
has to be identified from the point of view of the forward current-nucleon scattering ampli-
tude. This statement also applies to the finite-T' sum rule for the ¢-meson [19]. In support
of approaches like ours we wish to stress here its virtues of self-consistency: the thermal
modifications of the real and of the imaginary parts of the ¢ self-energy are computed si-
multaneously, not just one or the other. This has considerable appeal for the point of view
of theory.

The partial decay width into the 7p channel is the most affected by temperature. Since
it is smaller than the kaon channel to begin with, the net result for the width’s modification
is also modest. At 150 MeV temperature, the width increases by 11% and at 200 MeV
temperature it increases by 23% as compared to its vacuum value. The thermal rate of
dielectron production near the ¢ mass was shown to be altered accordingly. Polarization
effects are insignificantly small.

While our study answers some questions about temperature’s affect on properties of the
¢-meson, it does not address some potentially important issues. In the context of a loop
expansion of the photon self-energy, collisional broadening effects on the dilepton spectrum
are of two-loop order, beyond the present calculation. However, those have recently been
estimated [20]. A consistent incorporation of such contributions in our self-consistent frame-
work is desirable and considered. Probably the next-most-important idea to incorporate into
this calculation is a modified pion dispersion relation. Pion properties are probably also
modified at such high temperatures and it is important to see how sensitive other hadrons’
properties are to such things. There is also the question of finite chemical potentials. We
have neglected it, but inclusion of a nonzero y, is rather straightforward. These activities
are planned.
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FIGURES
FIG. 1. Diagrams that contribute to the one-loop ¢ self-energy. The kaon bubble and tadpole

are shown in (a) and (b) where the dotted circles represent kaons, while (c) shows the 7p loop.

FIG. 2. The imaginary part of the function F at three-momentum & = 0.05 GeV /¢ as it depends
on the invariant mass. The solid curve is the vacuum (7'=0) contribution, the dashed and dotted
curves correspond to T' = 100 and 200 MeV, respectively.

FIG. 3. Same as in Fig. 2 except a higher three-momentum of k¥ = 0.75 GeV/c.
FIG. 4. Partial decay widths as a function of temperature.
FIG. 5. The effective mass minus the vacuum mass m';ﬂ — m3* versus temperature.

FIG. 6. The real part of F at fixed three-momentum k = 0.05 GeV/c as a function of the
invariant mass. Kaon contributions correspond to the three curves that begin at the 2my threshold
as indicated. The 7p contributions are the three other curves on which temperature has less affect.

FIG. 7. The same as Fig. 6 with momentum & = 0.75 GeV/c.

FIG. 8. Dispersion relation for longitudinally polarized ¢-mesons at zero (solid curve) and finite
temperature (dashed curve T=150 MeV and dotted curve T= 200 MeV).

FIG. 9. Same as Fig. 8 except for transversely polarized ¢-mesons.

FIG. 10. Dielectron production rate for invariant masses near my from the sum of
KtK~ — ¢ — ete” and pm —» ¢ — ete™. The solid curve uses a T-independent form factor,
whereas the dashed curve is for longitudinal polarizations and the dotted curve is for transverse
polarizations. The value of three-momentum and temperature are k¥ = 0.05 GeV/c and 200 MeV.

FIG. 11. Same as Fig. 10 except momentum & = 0.75 GeV/c.
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