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Abstract

Theredationship between the Coulomb displacement energy for the A=8,
J=2*, T=| state and the low-energy astrophysical Sz factor for the
"Be(p,-y)BB reaction is discussed. The displacement energy is interpreted in a
particle-hole model. The dependence of the particle displacement energy on
the potential well geometry is investigated and is used to relate the particle
displacement energy to the rms radius and the asymptotic normalization of
the valence proton wave function in ®B. The asymptotic normalization is used
to calculate the astrophysical 1z factor for the "Be(p,y) reaction. The rela-
tionship to theLi(n,y) reaction, the®B quadrupole moment, radial density,

and break-up momentum distribution are also discussed.
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L. INTRODUCTION

Measurements of high energy solar neutrinos in the Homestake! and Kamiokande I
and III? experiments have found a significantly smaller number of solar neutrinos compared‘
to that expected from the standard solar model.® The B 8t decay is the main source of
these these high energy solar neutrinos. *B is formed by the "Be(p,7)*B reaction at a..c.enter
of mass energy of about 20 keV. Its cross section is conventionally expressed in terms of the
Sy7 factor.® Sy7 is known only from an extrapolation of data at energies abt_)ve 100 keV. Also
the highest precision data disagree, with those of Parker * and Kavanagh et al.® being about
30 percent higher than those of Filippone et al.® and Vaughn et al..” This has lead to the
investigation of other ways to determine the S7 factor such as the Coulomb dissociation, ® as
well as other properties of ®B which are indirectly related to the Sy7 factor such as its total
reaction cross section,® quadrupole moment,!® and break-up momentum distribution. *

Much of the theoretical work has been based upon using a potential model to gener-
ate the single-particle wave function for the most loosely bound proton, and then combining
this with a shell-model calculation of the spectroscopic factor to obtain the asymptotic nor-
malization of the wave function. This current work was initiated by the observation that
the potential model parameters (e.g. the radius R and diffuseness a of the Woods-Saxon
potential) used in previous calculations are taken from some “standard” sets based upon
nucleon-nucleus scattering optical potential analyses, and that these “siganda.rd” parame-
ters were not obviously appropriate to the particular case of "Be plus protons. We thus
investigated the extent to which the potential parameters could be determined from the dis-
placement energy of the A=8, .J“"'=2"', T=1 state as given by the binding energy difference
between the 3B and ®Li ground states. In addition, we also examined several quantities of
related interest including the "Li(n,v) cross section, the Q moment, the density distributions,

and the momentum distributions.



II. COULOMB DISPLACEMENT ENERGY

The rela.tionship. between the root-mean- squ;u'e (rms) radius of the valence proton
and the displacement energy is well known. 12,13 Quahtatlvely, the la.rger the rms radius the
smaller the displacement energy since the va,lence proton is further from the core protons.
This leads to the Thomas-Ehrman effect in which loosely bound valence nucleons have a
relatively smaller displacement energy compared to more tightly bound nucleons. In addi-
tion, for a fixed binding energy, nucleons in a low £ state have a smaller displacement energy
compared to thosei in a high ¢ state because the ceﬁﬁrifﬁga.l barrier for high £ mﬁlts in a
smaller rms radius. For heavier nuclei (A>16) with a relatively simple shell-model config-
uration, many quantitative calculations 6f fh‘e displacement energy have been carried out.
At the beginning of the 0dls shell (A=17, T=1 /2) and the Oflp shell (A=41, T=1/2), the
observed displacement energy is found to be a.bout 10 percent la.rger than that obtained
from calcilations which involve only the lowest shell-model configuration together with the
Coulomb interaction. These cases include those for high £ values whose Couloﬁxb shift is not
very sensitive to the potential-well geometry. This “Nolen-Schiffer” (NS) a.noinaly appears
not to have a simple explanation but is due to a combination of core-polarization, high-order
configuration mixing, and charge-asymmetric stroﬁg. intéractions'eifects. The systematips of
the displacement energies of light nuclei_ca,n also be semi-quantitatively accounted for with
a simple potential-well geometry. 1

‘In this paper we apply what has been learned about. the displacement energy system-
atics to constrain the shape of the potential for the Be plus valence proton system. The
-A=8, T=1 displacement energies aré more complicited than the T=1/2 systems usually
considered, since at least two nucleons are involved, However, the Op shell-model wave func-
tions predict a relatively simple structure for A=8, T=1. The spectroscopic factors (C*S)
for (A=8, 2+, T=1) — (A=T, 3/2", T=1/2) and (A=9, 3/2~, T=1/2) — (A=8, 2%, T=1)

~are experimentally and theoretically both near unity.*®'® Thus, *B can be considered as

a proton-particle neutron-hole configuration felative to ®Be. - The mirror nucleus Li is a
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proton-hole neutron-particle configuration. 3Be is itself “deformed” and thus exits in both
the ground state and 2* first excited state relative to the particle-hole conﬁgura.tion
The displacement energy of the pa.rtlcle-hole state is simply the sum of the partlcle

and hole displacement energies (the Coulomb pa.rtncle-hole interaction is zero)

AB = Ahole +_Apnrh | (1)

where Ag is the A=8, T=1 displa_.cement energy (the binding energy difference between
8Li and 8B). In the simplest a_pproximation Ahote is the A=T7, 3/2~, T=1/2 displacement
energy and Ap,,y is the A=9, 3/2-, T;l /2 displacement energy. The-e_xperimenta_.l values
are A;=1.645 MeV and Ay=1.851 MeV which gives A_—( + Ap=3.496 MeV compared to
the experimental A=8 value of Ag=3.540 MeV. So the simplest model works rather well.
There are however several reasons why thiq is not e:_.ca.ct’.. One is that the actual hel]—.model
configuration is a little more complicated than just pa.x:l;ic_lg-liple. Also the Thomag-Ehrman
effects may be significant since fhe proton is unbo;_md by bym 186 keV in °B and boun& by
138 keV in ®B. o __

Since we are particularly interested in the properties of the valence proton in ®B we

will proceed as follows. First Eq. (1) will be modified to read

Ao = Dioie + Mgyt Bemy ()
where A, will take into account the Op shell-model structure beyond particle-hole. Since
the hole state is relatively tightly bound, the Thomas-Ehrman shift will -be small and we
will take Apote = A7 = 1.645 MeV. A}, , indicates the displacement energy for the particle
in ®B which may differ from Ayqep: = Ap because of the Thomas-Ehrman shift.

The shell-model correction A,,, was calculated: by using the Coulomb plus charge
asymmetric interaction of Ormand and Brown!? within a full Op shell-model basis. The

matrix elements were calculated with harmonic-oscillator radial wave functions. The results

for the displ#cement energies are: Apye = Ay = 1.719 MeV, Ag = 3.656 MeV and Apppy =
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At = A = 1.873 MeV. This gives A, = 64 keV. Since harmonic-oscillator radial wave
functions are used the shell-model calculation should not necessarily be in good agreement
with experiment, however, it should provide an estimate for the A,,, correction. Thus the

displacement energy of the A=8 particle state is

A;,a,.t = Aa - A;w;, - A,m = 1.831 MeV. (3)

We are interested on how A;'m,, depends upon the potential geometry, aﬁd on how the
potential geometry effects the rms radius and l;hé astrophysical Sy7 factor. To investigate
this we will calculate the direct part of the Coulomb shift in a Woods-Saxon geometry This
means that we calculate the single-particle bmdmg energy with and thhout the one-body
Coulomb potential and take the difference to obtain the Coulomb dxspla.cement energy. The
Woods-Saxons potential has the usual form of central plus spin-orbit plus Coulomb terms.

The central potential has the form

V() = Vo{l +expl(r - R)/al}, )

where R is the radius, a is the diffuseness. We use the reduced mass in the kinetic energy
operator. The spin-orbit potential is the usual derivative form with the same geometry
as the central (we will show below that the spin-orbit potential is not important for our
analysis). The Coulomb potential is obtained from the density distribution of four tightly-
bound protons (two in 0s aﬁd two in Op) obtained with another Woods-Saxon potential
which is constrained to reproduce the experimental rms charge radius® of 2.52 fm for *Be.

We thus investigate the dependence of the Coulomb emergy, the rms radius and the
astrophysical Sy7 factor on the radius R and the diffuseness a of the central potential. In
all cases we vary R and q and fix V, in order to reproduce the ﬁroton separation energy of

138 keV. We calculate the direct Coulomb displacement energy A, and relate it to A’_, by

part

making several additional corrections:



A;nﬂ = AO + Adz + An + Aup + Anp + AJ'ol'.s'- (5)

A, is the exchange correction. A value of A,,=-125 keV was ob_'ta'ined from the harmonic-
oscillator shell-model calculation for Ag by comparing the results with and without the
Coulomb exchange terms. The next three terms are the relativistic spin-orbit correction
(Eq. 21 in Ref 12), the vacuum polarization correction (Eq. 4. 23 in Ref 13) and the proton-
neutron mass difference correction (Eq. 4.29 in Ref 13), respectlvely Our estlma.tes for these
are —20 keV, 12 keV and 14 keV, respectlvely

The Nolen-Schxffer correction, Ayg is perha.ps the most uncertaun To find a value of
Ans appropriate for the Op shell, we examine the A-13 1 /2‘ T=1 ]2 dlspla.cement energy.
In this case we use a Woods-Sa.xon geometry for 12C (R 2.90 fm and a = 0.56 fm) similar to
that of Ref 19 which reproduces the **C rms charge radius and the elastic electron scattering
form factor of 3C. Given these constraints the 12C potential geométry is well determined.
The results for the A=13 displacement energy are of the form of Eq. (5) with A, = 2.969
MeV, Ao = ~271 keV, A, = 55 keV, Ay, = 18 keV and A,, = 20 keV. When equated to
the A=13 experimental value of Apers = Acey = 3.003 MeV, one obtained Ays = 212 keV
or Ans/A, = 0.071. We remark that A, by itself is close to experiment as observed in the
analysis of Ref 14, and this can also l;:e seen in other displacement energy calculations (see
Ref 20 and references therin). We are not aware of any simple or fundamental reason why
the correction terms (including the exchange term) tend to cancell. We will proceed using
Eq. (5) assuming that Ays scales as A,. For our A=8 case, A, is about 1.80 MeV, and we
will take Ayg = 128 keV. Thus we arrive at the emi)irical value of

A,(empirical) = 1.822 + 0.026 MeV, (6)

with which we will compare our calculations fo.r. the direct Coulomb shift of the valence

particle, (Again we note that A’ part a0d A, are nearly equal. ) The error comes from assuming



a 20 percent uncertainty in Ays and the analysis associated with it,

We show in Table I the results for A;, the rms proton radius and the density of the
valence proton at r = 10 fm, p(10fm), as a function of R and a. Beyond the influence of the
strong interaction (about 6 fm) the shape of the radial wave function is'entirely and uniquely
determined by the Coulomb plus centrifugal potentials. . The only quantity which depends
on the potential is the asymptotic normalization as represented, for example, by the value

of p at r = 10 fm. Our p(r) is defined by the normalization:

4r j ,p(r)r2 dr =1. (7
In order to show the correlation between Ao, rms and p(lﬁfm) we plot values obtained for
these quantities in pairs in Figs. 1 (A, vs rms), 2 (A, v8 p(10fm)] and 3 [rms vs p(10fm)].
We find that there is strong correlation Between them, which implies thﬁt from a knowledge
of any one of them (in particular A,) we can infer a ;‘a.ngg:of values for the other two.
The results in Table I were obtained fgnr. a Opa/s valence particle. For R=2._40 fm
‘we show the results with and without tille spin-orbit potential, and from this comparison it
is clear that spin-orbit potential is not important :(_a.s lo_gg as V, is"ﬁ.xpd from the 138 keV
separation energy). Thus to a good approximation, our results apply to both Ops/; and Op, /3.
The results shown in Figs. 1—3 show that there is a rather narrow band of points which
relate the quantities of interest in the framework of the Woods~Sa.xon potential model. From
Fig. 1 one finds that the vﬂue of A,-—;1.822:|:0.0_26 ‘Me’V corfe;aponds to a narroﬁ range of
rms valence radii from 4.3 to 4.6 fm, and frénl:ltFig 2 one ﬁnds that the same A, corresponds
to p(10fm) values in the range 6.2 to 7.8 fm—¢. The correlation between the rms radius and
p shown in Fig. 3 is even more para.meter mclependent
The Woods-Saxon parameter set in the middle of the range allowed by our displace-
ment energy analysis is R=2.40 fm and ¢=0.62 fm. This is compa.red in Table II with the
parameters used in a number of other potential model calcula.tlons for S;7. The results for

A,, rms and p(10fm) for the potentials in Table I are shown by the labeled crosses in Figs.



1-3. The results with Tombrello parameters (T), obtained from an optical model analysis of
180 MeV proton scattering on Li and Be by Johansson et al.,?! are on the high side compared
to ours. The Tombrello parameters were subsequently used by Aurdal?* and ‘Robertson. 22
Parameter set BI from Barker is in the range of our.allowed values. But his modifications
of the parameters (BII and BIII) needed to reproduce the "Li(n,y) cross section (see the

discussion below) are clearly outside of our range:

III. RESULTS FOR THE ASTROPHYSICAL S,y FACTOR

The astrophysical Sy factor is related to p(IOfm) in the following way. At very low
energies (< 50 keV) the "Be(p,7)®B capture cross section is dominated by the E1 transition
between the "Be+p scattering states and the *B ground state,* and it is almost exclusively
determined by contributions coming form the extérnal part of the scattering and bound state
wave functions. The asymptotic behavior of the scattering states i$ uniquely defined (the
phase shifts Being the hard sphere phase shifts - ﬁficticalllryj ze'rd), and the asymptotic part
of the wave function, which describes the "Be+p relative motion in the bound state ®B, is
proportional to the fixed Whittaker fﬁnétion, |

R AP ®
where I = 1,2 is the channe;l spin, r is the radial distance be_tvﬁeen "Be and p, and k is the
wave number ;:orresponding‘ to the B b%nding énérgy relative to the "Be+p thfeshold. &r
are the cdnstaﬁfs which are required to ﬁorma.lize_ the Whittaker function to the asymptotic

8B wave function. Thus, at low energies. the a’strophyéibal S17 factor of the capture reaction,

Su(E) = a(E)Eexplonn(E)], (9)

depends only on & 3% (here = €22, Z;/hv with Z; = 1, and Zy = 4 is the Sommerfeld

parameter). From the hard sphere scattering states one obtains:



S17(20keV) = 36.5(283 +&2). (10)
(The uncertainty coming mainly from the fact that the nucleon mass is not well defined in
nonrelativistic quantum mechanics, is 1—2 percent. The value of the S factor at zero energy
is roughly 0.4 eV-barn higher than at 20 keV.) Using this formula we can express Sy (in

units of eV-barns) in terms of the valence proton density at any given asymptotic radius,

e.g. at 10 fm,

S17(20keV) = 2.99'10° paj2(10fm) Syz [(ar,32 + 7 orpa) + (Qage + ¥ e212)?), (1)

were the o coefficients are determined from the transformation between the "Be(J;) + &; =

8B(J;) coupling and the channel-spin 'coupling:

@ 41" = el @ 1/2) @ 47, (12)
. I .
and < is given by the ratio:

_. [01/2 ¥1/5(10fm)]
7= (8373 ¥3/2(10fm)]’ (13)

In Eq. (13) §; is the n = 0, £=1 spectroscopic amplitude and in Eqgs. (11) S; is the spectro-

scopic factor. The amplitudes §; are given by the reduced matrix elements *” of the creation

operator, a*:

(*B, J || @ proton || "Be, J5) |
0;(J;, = ’ ' 14
(i i) "ﬁ%— (14)
When 0; is given without its J;, J; arguments as in Eq. (13), it corresponds to the °B ground
state (J; = 2) to "Be ground state (J; = 3/2) value. The spectroscopic factors take into
account the additional center of mass correction factor, ?® [A;/(A; — 1)].= 8/7:
Ai

Sj = I—-_—10§, | . : (15)
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In Eq. (13), ¥(10fm) is the radial amplitude at r = 10 fm:

 p;(10fm) = $(10fm). (9

In our case where =1, J; = 3/2, J; = 2'and I = 1,2, the transformation coeflicients
are oy 3/2=0y ;/3=a9,1/2=1/\/§ and @y /y=-1/ VvZ. In addition, to a good approximation,
¥1/2(10fm) = 13/5(10fm) = 1(10fm). Hence Eq. (11) simplifies to:

$17(20keV) = 2.99-10° p(10fm) S, | (17)

where § = S35 + Sy

In Table III we give the values of 8; obtained from Op shell model calculations with a
variety of interactions 23%3! which are appropriate fbr the lower part of the Op shell. These
amplitudes are quite stable with respect to a reasonable range of interactions.

In Table IV we compare the theoretical spectroscopic factors with those obtained
from reaction data!® for states of SLi as well as those extracted from the observed widths
of unbound states in 3Li and ®B.3? The spectroscopic factors for the unbound states are
obtained from F,,,,, = STy, where Ty is the single-particle width for a resonance at the
experimental separation energy in the our potential geometry (R = 2.40 fm and a = 0.62
fm). The decay data are observed to be in excellent agreement with theory. The reaction
spectroscopic factor for the 2t state is low with respect to theory, however, it depends upon
| the potential parameters used for the DWBA calculations. The DWBA fits to the data
shown in Ref 15 are not particularly good, and we would suggest an new look at the analysis
of this data as well as experimental confirmation. In the meantime we adapt the theoretical
spectroscopic factors.

Combining with our results of S = 1.15 £ 0.05 and p(10fm) = (7.0 £ 0.8)'10~¢ fm~3
we obtain 517(20keV) = 24.1 £2.9 eV-barns.
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IV. RELATIONSHIP. TO THE "LI(N,y)*L1 CROSS SECTION

Barker ¥ has pointed out that standard potentml models tend to overestimate the
experlmenta.lly well-determined low-energy 7L1( ,7)3L1 cross section. He argued, that one
should modify either the potentlal para.meters or the spectroscoplc factor to get agreement
thh experlrnent To study this issue, we performed calculations for the "Ll(n,'y)aLn reaction.

Beca.use there is no Coulomb barrier i in this reaction, the inner parts of the wave
functions have the same importance as the asymptotic pa.rta Thus the cross section does
not depend solely on the asymptotic nor:nahza.tlon of the bound state wave function. For
the ®Li bound state we used the same potentxa.l parameters as for B, except a change in
the potent1a1 depth to get the exact neutron separatlon energy of 2. 033 MeV. For the "Li+n
scattering states, we modify the potentials to nreprod-uce the experimental scattering lengths
ofthe /=1,and I =2 cha.nnel spin states, respectwely

The thermal "Ll(n,'y)’Ll cross section obtamed w1th our potential parameters is 76
mb. The range of potential values allowed by our ana.lys: would change this only by about
5 percent. The experimental thermal cross section is 45.4:£3.0 mb. ** Thus we also obtain an
overestimation of the "Li(n,y)%Li cross section as gid Barker. H@e_ concluded that either the
potential parameters or the spectroscopic factor ha& to be changed in order to agree with the
experiment, and that these’changes would bring the "Be(p,7)*B 517(20keV) factor down to
16-17 eV-barns. The modifications to the potential are very large (R is changed from 2.39 .
to 1.01 fm or a is change from 0.65 fm to 0.27 fm) and we can see from Figs. 1—2 that these
large changes are inconsistent with the Coulomb displacement energy. Thus we can exclude
the possibility of radically changing the potential parameters. In the spirit of Ref 33, the
only remaining possibility would be tﬁe reduction of the spectroscopic factor to about 0.71.
But given the general agreement we obtain for the decafj Qid,ths in Table IV, such a large
chh.nge in the spectroscopic factor seems unreasonable. In fact such a drastic change would
question the adequacy of the potential model itself.

We would like to point out that the discrepancy in the "Li(n,y)®Li cross section could

13



be resolved in & way which does not affect the "Be(p,7)*B cross section. As mentioned,
contrary to "Be(p,y)’B, the inner part of the wave functions is important in the case of
Li(n,y)*Li. Although the reproduction of the 'écatteringmlengﬂths fixes the external part
of the scattering wave t;ﬁnctions, the inte‘rnal,a 6ff-s"hell.,‘.p;rt is not well-constrained, For
instance, if the inner node of the wave function were somewhat further outside than in the
~ potential model, this would briﬁg the 7Li(ﬁ,7)‘1i cross section down. To illustrate that the
node position is not well-defined, we show in Fig. 4 the inner part of the T =2 scattering wave
function of the standard potential (BI) of Barker® (solid line) fokether with the sca.tfefing
state obtained from the cluster model of Ref 34 (dashed l.iné)la.t‘ Ecm=10 keV. This change
in the off-shell behavior is enough to reduce the "Li(n,7)®Li cross section cori;sidera.bly. In
fact, the dashed liné of Fig. 4, togethei' with the bouﬁd state of the standard poténtial‘ of
Barker 3 results (after a 1/v extrapolation from 10 keV) in a thermal cross section of 46.3
mb, which is close to the expenmental value. We enmhamze aga.m, that this modification in
the off-shell behavior of the scattenng wave functions has no eﬂ'ect on the 1'Be(p,"y)*’B cross

section.
V. RELATION TO THE *B QUADRUPOLE MOMENT

The quadrupole moment, @, of *B is related to the above calculations in the following
way. Q is proportional to the matrix element of the E2 = r*Y®) one-body operator whose
reduced matrix element is given by a summation over products of many-body matrix elements |
times single-particle matrix elements 3% .

(% W [ats ®“:'*_1"" URY )(3,.t,||7E2-|| PR (18)

(1| B2 ) By = X

jlj'v‘!‘
where A=2. The ¢, indicates a sum over protons’and néutrons. By inserting a complete set

of states (Jy) of the A = 7 system between the'a* and &, one can rewrite this as a sum

over all Op shell states of the A=7 system:
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(T B2I Ky = E+1) 30 (Z1)1'050,(Ji, I1)0j1s (s Jy)

j!j'v‘l"’f
J; J; 2 ] v
X .. (J,tz ” E2 ”J ,tz), (19)
J 3 Js

where the states J; are in "Be for {,=proton and are in ’B for ¢,=neutron. The sum over
Jy can be broken down into the term coming from the ground state of "Be (referred to as
the valence term, vp) and all other terms coming from excited states in "Be and all states
in "B (referred to as Op core proton and neutron terms, pcp and pen, respectively). The
single-particle matrix elements are given by a geometrical term times the single-particle
mean-square radius, {r?).3® The Q momént can thus be Aexpressed in the form

Q(®B) = —0.8003/361/2(r*)upep + 0.203 {r*}pepe, + 0.183 {r?),cnen
= 0.187(r)upeyp + 0.203 () pep + 0.183 (%) ycnen, (20)

where the CKI interaction ? was used for the spectroscopic factors. The numerical coefficient
—0.80 is purely geometrical. The effective charges e, and e, take into account the non-Op
parts of the wave functions which include 0s to Op and Op to 0d1s proton excitations. For the
remaining discussion we will use values of e, = 1.35¢ and e, = 0.35¢,® although we realize
that these are approximate values and that they may depend upon the binding energy. 3’
Our calculation for the radial matrix elements gives {r?},, = 19.7 fm?, (r¥),,, = 8.1 fm?,
and (r*)pen = 7.8 fm?, and hence we obtain Q(*B) = 7.7 efm?, in reasonable agreement with
the experimental value!? of 6.8340.21 efm?. The Q moment for ®Li can be obtained by
interchanging the‘la.bels for p and n in Eq. (20), and ﬁsing our value of (r?),, = 13.3 fm?, to
obtain Q(°Li) = 3.42 e fm? which is close to the experimental value !° of 3.274:0.06 e fm?. The
effective charges we use are approximate, and it would very difficult to estimate the them
more quantitatively. Even though our calculated values are close to the experimental values,

it is clear that the rela.tiohship to the valence rms radius and asymptotic normalization is
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quite complicated. In addition, we note that the Q moment depends upon the interference
term 03/30,/; whereas the tail density is determined by the combination A3 /2 + A};; which
is dominated by 03/;. The term in Eq. (19) which is proportional to 034203/ is zero Beca.use
the 6j symbol vanishes (physically it is related to the vanishing of the Q moments in the
middle of a single j shell).

VI. RADIAL DENSITIES AND MOMENTUM DISTRIBUTIONS

The radial densities ébtained in our potential parameters are shown in various ways
in Figs. 5-7. For the sake of simplification it will be assumed in this section that there is a
single valence proton with a binding energy of 0,138 MeV, four tightly bound core protons
(two in the Op shell with a separation energy of about 6 MeV and two in the 0s shell with a
separation energy of about 16 MeV} and three tightly bound neutrons (one on the 0Op shell
with a separation energy of about‘ 8 MeV and two in the Os shell with a separation energy of
about 18 MeV). The actual situation is a little more complicated than this because S = 1.15
and because there is also some parentage of the protons in ®B to the first excited state in
"Be which wiﬂ result in some leakage of the core protons to larger radii. The results here
are thus more qualitative than those given above for Sys. _

The normal density p(r) is shown in Fig. 5, the probability density P(r) = 4mr?p(r)
on a log scale in is shown Fig. 6, and the probability density on a linear scale is shown i“ig.
7. In all figures the neutron density is shown by the dashed line, the core proton. density
with crosses, and the valence proton density with a solid line. Note in Figs. 6—7 that the
areas are equal to three, four and oné, respeétively. The valence proton clearly has a large
extension, but whether or not it constitutes a “halb” or a “skin” is a question of semantics.

The valence proton (vp), core proton (cp) and neutron {n) rms radii are:
Vi{rt)ew = 4.44fm, (21)
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V), =2.39fm, (22)

and

\/(ri),, = 2.21fm. (23)

The total proton rms radius is given by

Ve = /14 + (r2)5]/5 = 2.92fm. (24)

The rms charge radius includes the rms radius of 0.80 fm for the proton:

e = \/[{r?), + 0.64fm?] = 3.03fm, (25)
v v

and the matter radius is given by:

Vim = 5(2), + 3(r2),)/8 = 2.68fm. (26)

Our results can be compared to those of other theoretical calculations. The results
of {/{r?}sy = 3.75 fm obtained by Riisager and Jensen3? is much smaller than ours but they
use an arbitrary potential shape. The reason for their small Sy is obvious from Fig. 3. The
calculations presented in Ref 10 for the Q moment appear to be very close to our results. ‘

The high-energy (800 MeV/nucleon) interaction cross sections for ®B and ®Li on
13C have been calculated with the method of Ref 39. The results with the finite-range
interaction are o=843 mb for "B.a,nd 0=820 mb-for ®Li. These can be compared to the
experimental values of 0=784(14) mb?® for B and 0=768(9) mb for 8Li. The agreement
for the magnitudes is as good as can be expected from the uncertainties in the calculation.
However, the 8B/8Li ratio (in which some of the reaction uncertainties may cancel) is in
excellent agreement between theory and experiment. The effects of the proton “halo” in ®B

and the neutron “halo” in ®Li are not large compared with the classic cases 3940 of Uri 11Be
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and “Be. The low-energy (20-60 MeV /nucleon) total reaction cross section appears to be
more sensitive to the extended proton distribution in ®B. 4

Recent radioactive beam experiments “_v“’ havé looked at the momentum distribution
of the "Be fragments which result from the break-up of a beam *B on various targets. From
these experiments one expects to determine the momentum distribution of the most loosely
bound protons. The longitudinal momentum P(k,)wobta.ined for the valence proton is shown

in Fig. 8. This is obtained by the Fourier transform of the spatial wave function:

e

- 1 R
® = Gy / w_(m‘ P | (27)
where ¥(7) = ¥(r)Ys(#), ¥(K) = J-(k)lfi(ﬁ), and ‘where the radial momentum distribution is
given by:

.z(k):‘/g ‘—;-'- /¢(r)jg(kr)r2dr. L . (28)

The longitudinal momentum distribution is given by

P(k) =5 [ 196R) [ kodk, (29)
 where k3 = k2 + K2, '

The calculated momentum distribution has a width of about 150 MeV/c compared
to the experimental value of 81+6MeV/c. Given the good agreement generally found for
calculated and observed neutron halos*® this disagteement is puzzling. There is some dis-
cussion in the literature about ways to improve the above calculation to take into account
the peripheral nature of the reaction. “** In the périphe‘ral direct reaction model one puts
in an additional cut-off in Eq. (29) to exclude the interior part of the radial distribution
which presumably does not contribute because the cross section coming from that part is
dominated by a more violent reaction where the core ("Be in this case) ‘is destroyed. We
have phenomenologically modeled this effect by putting a Fermi shaped cut-off factor in Eq.
(28) which has the effect of excluding the interior out to a radius Ry #nd with a diffuseness

16



© @cut. We take a.,:=0.65 fm and vary R, to get about the observed momentum distribution.
This requires R.,.=5 fm and the results are shown by the dashed line in Fig. 8. The cut-off
results in a reduction of P(k,) at small momenta by a factor of 2.5 and we have renormalized
the cut-off distribution by this factor in order to show the change in width. It is already
known that the cut-off factor does not have much effect on the neutron halo momentum
distributions,*3 and we have demonstrated that even a value as large as R.,; = 5 fm has
little effect on the width of the 'Be neutron halo momentum distribution. We do not know
why we should need R.y¢=5 fm, but we note that this corresponds to the point in Fig. 5—7
where the valence proton density falls below the core density. More work needs to be done
to understand these results.

Schwab et al.!! present an RPA calculation which goes beyond the Op shell and which
agrees with the shape of the observed momentum distribution. However, the shape of the
wave function beyond about 6 fm as shown in Fig. 4 in their paper appears unrealistic to
us. The shape beyond about 6 fm is entirely determined by the Coulomb and centrifugal
barriers, and .their shape differs from this expectation. OQur own calculation can of course

| be criticized for staying within the Op shell. However, a very recent “no-core” calculation 4*
along the lines of those given in Ref 46 which takes into account the lowest .six major shells
(21 shell-model orbitals) and up to 4hw in excitation gives spectroscopic factors which are

closé to the present Op shell results.

VII. CONCLUSIONS

Our calculated value of S17(20keV) = 24.1 & 2.9 eV-barns is in consistent on the
upper side with the values of 25-27 eV-barns inferred from the (p,y) data of Parker? and
Kavanagh et al.,® and on the lower side with the value obtained from the weighted average
of all experimental data, Sy7 = 22.2 £ 2.3 eV-barns, ¥ which is the value currently adopted
in most solar models. 48 As far as other theoretical predictions are concerned, our current

result for Sy7 is in the middle of the range of (~30 eV-barns) *® to (~17 eV-barns). 2450
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We note, that in contrast to the comﬁlon belief (e.g. Ref 50), a small value of Sy;
does not make the solar neutrino problem less severe. If one takes standard nuclear and solar
physics, and standard neutrino properties, then the best fit 5! of the neutrino fluxes indicates
a suppression in both the "Be (¢7) and the *B (@) neutrino fluxes, but the suﬁpression is
much stronger in ¢7. However, a smaller Sy7 value alone would make the predicted ¢7/ds

ratio larger, which would make the solar neutrino.problem even worse.
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Figure Captions
Fig. 1: The valence proton rms radius as a-function of A,. The three lines join the points
obtained for different value of the diffuseness a for B=2.0 fm (filled circles), R=2.4 fm (open
circles) and R=2.8 fm (squares). The results fc»r the slieﬁiﬁc potentials in Table II are shown
by the labeled crosses. The region between the vertical lines are the range of values allowed
by the displacement energy.

Fig. 2: The valence proton density at r=10 fm as a function of A, (see caption to Fig. 1).

Fig. 3: The valence proton density at r=10 fm as a function of the valence proton rms radius

(see caption to Fig. 1).

Fig. 4: The scattering wave function for "Li(n,7) obtained with the standard potential (BI)
of Barker 3 (solid line) fogether with the results obtained with the cluster model (dashed

line).

Fig. 5: The radial density proﬁle for B for the neutrons (dashed line), the core protons

(crosses) and the valence proton (sohd line). -
Fig. 6: The radial probability distribution for ®B on a log scale (see caption to Fig. 5).
Fig. 7: The radial probability distribution for ®B on a linear scale (see caption to Fig. 5).

Fig. 8: The momentum distribution for the ®B valence proton. The solid line corresponds
to the full radial wave function and the dashed line corresponds to the radial wave function

cut-off at r=5 fm.
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TABLES .
TABLE L Values of A,, the rms proton radins and p(10fm) as a function of R and a.

spin-orbit R (fm) a {fm) A, (MeV) rms (fm) p(10fm)10% (fm—3)
ys 20 - 04 . 2108 -3.70 4.25
yes 20 06 1947 - 414 5.81
yes 2.0 0.8 1.786 4.62 | 8.00
yes 2.4 0.4 1960 402 | 5.27
yes 2.4 06 1840 440 : 6.85
yes : 24 0.8 1706 4.84 : 9.07
yes 2.8 0.4 1.836 4.35 6.48
yes 28 0.6 1.735 468 , 8.10
ys 28 08 163 508 10.40
no 2.4 0.4 o1 397 5.09
no 24 0.6 1.851 4.38 6.74
no 24 08 1708 . 484 - . 9.05

%Wm
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TABLE II. ‘Woods-Saxon potential parameters from the present analysis compared
to those used by Tombrello®? and Barker 1.3 Barker I'and III correspond to those

values Barker needed to reproduce the "Li(n,y) cross section.

Set R (fm) a (fm)
Present 2.40 0.62
Tombrello (T) 2.95 0.52
Barker BI - 2.39 | 0.65
Barker BII : . 1.01 0.65
Barker BIII | 2.39 0.27

= e e e ]
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TABLE HI. Spectroscopic amplitudes 8;(J;,J; = 3/2) for 8B to "Be from the
CKI,? Kumar® and PTBME?! interactions. The order of the states for a given J7

is indicated by n;. i '
e e T T

HLY, j - CKI Kumar PTBME
2+,1 3/2 0.988 0.966 | 0.986
1/2 ~0.237 -0.259  —0.253
1+,1 3/2 0.567 0.606 0.552
1/2 -0.352 ~0.244 ~0.342
3+,1 3/2 0.581 0.555 . 0.565
1+2 3/2 0617 05 0.525
1/2 0.840 0.861 0.859

s e S e



TABLE IV. Theoretical spectroscopic factors § = 8y, + Sg/, for ®Li and ®B com-
pared to those based upon decay widths®3.and (zd;p) reaction data.!®

el e e

I3 8B exp(decay) 8Liexp(decay) " SLigyg(reaction) CKI  Kumar PTBME

2+ - 0.87(13) 117 1.14 1.19
1+ 0.54(7) -0.48(7) 0.51 0.49 0:47
3+ 0.38(4) 041(7) ©0.39 035 0.36
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