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Recent shell-model calculations for light nuclel are discussed. The properties
of exotic nucle near the drif) lines are emphasized because they provide new and
interesting tests of the shell-model predictions and because they are becoming
experimentally more. accessble. The full Op. and Odls spaces are considered and
up to 4xw mixing between them is alowed. The specia role of low-lying Odis
states in the nuclei “Be, *2Be, 1°Li and *Li is examined. In addition, “ Super”
Gamow-Teller transitions in nuclei up to 1908p are discussed.

1. INTRODUCTION

One of the main advances in the theory of nuclear structure in the last few decades
has come from the extension of the shell-model to more complete bases with more
accurate effective interactions. 1) The completeness has been due to our ability to
congruct and diagonalize Hamiltonian matrices with m-scheme dimensions up to
the order of 10% and J-scheme dimensions up to the order of 10%. This advance
has come' from new techniques and computer codes for calculating the matrix
elements together with the Lanczos method for efficiently obtaining the low-lying
elgenstates for such large dimensions. The accuracy has improved due to a better
understanding of the effective one-body and two-body interactions, both a the G
matrix level and at the phenomenological level, for specific model spaces and mass
regions. More recently, the Monte-Carlo shell-model method has been developed



and applied to the calculation of observables for the ground states of even-even
nuclei which effectively incorporate bases with dimensions of up to 10? or more. 2
Future progress with the conventional and Monte-Carlo methods will rely mainly
on the continued improvement of the Hamiltonians, and one may eventually hope to
obtain a “universal” nuclear Hamiltonian.

In this talk I will focus on some recent work on the shell-model structure of nuclei
in the mass region A=10-20. This work was initiated in collaboration with Ernie

Warburton. At the end I will discuss the role of “super” Gamow-Teller transitions in
nuclei up to 1%°Sn,

2. THE Op-0d1s BASIS FOR THE MASS REGION A=10-20

It is well known that the shell-model configurations are a mixture of intrinsic
excitations and center-of-mass (spurious) excitations. The lowest 0w configurations
are particularly simple, since the center of mass is in a Os state.® In order to
completely separate out the spurious states, the basis must be constructed in a
full NAiw harmonic-oscillator configuration space. For example, the [Op,;,~1-
1s,/,](J=1",T=0) configuration is partly intrinsic and partly spurious. To remove the
spurious state component, the full Op~!-Od1s configuration space must be used. A
particularly simple method for removing the spurious component is to add a fictitious
Hamiltonian which acts only upon the center-of-mass and whose function is to push
up the spurious states to a high excitation energy. 4)

The investigation of the Op-Od1s model space has proceeded in several steps. In
the (Op)™ basis all states which can be constructed from n-particles in the Opsjapr /2
basis are considered. There are many states in the mass region A=4-16 whose ’
structure is known experimentally to be Op™ from which the properties of the Op
Hamiltonian can be obtained. In the (Od1s)™ basis all states which can be constructed
from m particles in the Ods/2-0ds/5-1s, /, basis are considered. There are many states
in the mass region A=16-40 whose structure is. known experimentally to be (0d1s)®
from which the properties of the 0d1s Hamiltonian can be obtained. One can also
construct configurations of the form (Op)*-(0d1s)™ in which both Op and Odls are
active (this means that both are partially full).

By “Ohw™ I will mean the specific (Op)®-(0d1s)™® configuration which is lowest in
energy for a given N and Z value. For example, the 0 Ofiw configuration is (Op)12,
the '*Be O%w configuration is (Op)”, and the 1C OAw configuration is (Op)1%-(0d1s)2.
By “1fiw” I will mean the configuration in which is higher in energy by a unit of



1Aw in the harmonic-oscillator model. For example, the %0 1Aw configuration
is (0p)**-(0d1s)! [or (Op)~—1-(0d1s)'], the *Be 1%w configuration is (Op)®-(0d1s)t
and the 1°C 1hw configuration is (0p)®-(0d1s)!. NAw excitations are defined in an
analogous manner. For example, the 10 45w configuration is (Op)®-(0d1s)*. These
notations indicate the predominant Op and Odls parts of the wave functions, but as
noted above, other configurations involving the Os, Oflp and Og1d2s major shells
must also be included in order to eliminate the spurious state. The states with Nfiw,
(N+2)Aw, etc all have the same parity and in general can mix. I will initially consider
only those states which are known experimentally to have rather pure O%w and 1Aw
configurations in a model which includes only these pure configurations.

Our shell-model wave functions are always described by discrete states as if they
were bound in an infinite harmonic-oscillator well. The effects of the finite-potential
well become important for higher-excited states in normal nuclei and even for the
ground states of nuclei near the drip lines. In the application to these situations one
can consider the shell-model wave functions as being applicable in the interior. The
interior wave function must be matched onto an exterior finite well or scattering
wave function. This is accomplished by considering the one-nucleon parentage of
a given state to all core states (in the nucleus with A-1). Each of the core states
leads to a different part of the extended single-particle wave function. This model is
most appropriate when the parentage leads to a unique core state. Its application to
the situation where many-core states are important or to those cases where the two-
nucleon (or cluster) separation energy is smaller than the single-nucleon separation
energy is questionable.

The separation-energy method has been successfully applied to the E1 transition
between the loosely bound neutron states in 1'Be, ) first-forbidden beta decay, ® E2
transitions and Q moments for loosely bound proton and neutron states & 9 and to
the total-reaction cross sections of nuclei out to the drip lines. 19 11,12)

The effective interaction which is obtained from experimental energies implicitly
takes into account the model-space truncation and finite potential well effects. The
main assumption is that these effects are uniformly spread over the entire mass
region under consideration. At some level this must be an inadequate description,
and a binding-energy dependent interaction should be considered. As the wave
function becomes more loosely bound, the residual two-body interaction decreases.
However, the density-dependence of the effective. i_nteractionl") tends to increase
the interaction for loosely bound states (which overlap less with the core density)



and hence to cancel part of the decrease from the geometrical effect.

3. CROSS-SHELL INTERACTIONS FOR PURE NAiw CONFIGURATIONS

Ernie Warburton and I determined the Op-0d1ls cross-shell interaction using both
the model-independent (MI) and one-boson exchange potential (OBEP) methods. 14)
The interactions derived from a fit to 165 cross-shell energy-level data are denoted
by WBT and WBP, respectively.'® The rms deviation between the calculated and
experimental energy level data in the mass region A=10-22 was about 330 keV. With
the OBEP method, harmonic-oscillator radial wave functions were used to calculate
the two-body matrix elements. In both cases the states are assumed to be described
by pure Nfiw configurations, and only those data where the level is known to be
rather pure were considered. The MI method was developed by Wildenthal for
the 0d1s shell. 1® The OBEP method has also been successfully used for the 0d1s
shell %) and our application of it for the Op-Od1s interaction is similar in spirit to the
work of Millener and Kurath 17) for this mass region.

When the WBT or WBP interactions are used to calculate the energies of the
pure 0%, T=0 configurations in 180, the excitation energies of the 2fiw and 4hw
configurations come out at about 9 MeV and 6 MeV, respectively, in reasonable
agreement with where these states are experimentally observed in cluster transfer
reactions. This is also the case for other nuclei in this mass region. This agreement
is perhaps surprising, but can be understood in terms of the weak-coupling models
developed many years ago by Arima and others. 18 19)

4. INTRUDER STATES IN 'Be and '°Li

The ground state of 11Be with J* = 1/2% is one of the outstanding exceptions to
the simplest shell-model picture. It is an example of an “intruder” 1w configuration
which lies below the normal Ofiw configuration which with J* =1/2". Our new 1w
calculations which by construction are able to reproduce this inversion'®) provide
an opportunity 29} for a new quantitative understanding of this feature which has
long been of theoretical interest.?!) One can account for the energy gap between
the 1/2+ ground state and 1/2~ excited state at 0.32 MeV in terms of three distinct
physical contributions: (i) the monopole energy gap between the Op an Odls major
shells, (ii) the pairing interaction, and (iii) the proton-neutron interaction. In 'O
the energy gap between the Op,,, and 1s,;, single-particle states is about 6.0 MeV.



When we examine the change in this gap with our interaction as a function of proton
number between %0 and 19He, we find a monotonic decrease down to about 2.4
MeV in 1°He. The effective single-particle energy gap for 11Be is about 3.6 MeV.
This change comes out automatically from our fitted interaction, but it can also
be understood as a consequence of the decrease in spacing between levels as they
become more loosely bound in a finite well. 20)

There are two configuration mixing (correlation) effects which lower the energy
of the 1/2* configuration in 'Be. There is an extra pairing energy in the 1/2*
configuration due to the two neutron holes in the Op shell, which lowers the 1/2+
configuration (relative to the 1/2 configuration) by about 2.2 MeV. Also, there is
mixing with the [2*®d,/,](1/2%) configuration via the deforming Q'Q interaction,
which lowers the energy by about 1.5 MeV. Adding up (i), (ii) and (iii), the 1/2* and
1/2~ configurations become essent{ally degenerate. This degeneracy appears to be
due to an accidental cancellation of several effects and not fundamental — but this
aspect would be interesting to explore further.

The interplay of the three mechanisms discussed above for the parity-inversion
in 1*Be are responsible for similar phenomena in other nuclei. In particular, recent
investigations of resonances in 1°Li have suggested the presence of a narrow low-
lying s-wave.??) Barker and Hickey have suggested that there may be a parity
" inversion in 1%Li, and our WBT and WBP interactions also predict a parity inversion
in 1°Li. In detail, the calculated (0+1)%w spectrum of 1°Li with the WBT interaction
is 27(gs), 17(0.10 MeV), 2+(0.32 MeV), 1-(1.30 MeV), 0-(1.93 MeV) with eleven"
more levels up to 4 MeV. Experimental confirmation is important not only from the
point of view of the unusual narrowness of s-wave cross section near threshold, but
also for the structure of 1!Li.

5. MIXED CROSS-SHELL CONFIGURATIONS

It is important to study the mixing of Nfiw configurations. As a prototype, we
can consider the mixing of the 0, 2 and 4Aw configurations for **0Q. When our WBT
interaction'® is used, the mixing between the Nfiw configurations is very large. 2%
The state which is predominantly 25w comes out at about the right excitation energy,
however, the state which is predominantly 45w comes out about 11 MeV too high
compared to the well-known state at 6 MeV. This is understood from the fact that
~ the mixed ground state is pushed down by about 11 MeV relative to the pure Ohw
energy by the admixture of the 2 and 4 Aw configurations. However, the comparable



6 and 8 Aw configurations which are needed to push down predominantly 4%w states
are not present in the model space. It is the SU3(20) component of the off-diagonal
Ahw=2hw interaction which is responsible for this shift. We have proposed?? a
simple “shift” method to take into account this truncation. This shift can also be
regarded in some approximation as giving rise to an effective gap reduction between
the Op and Od1s shells as used by Haxton and Johnson.24

Another problem in the mixed Niw model space is the effective interaction. It
is really not appropriate to use our WBT or WBP interactions in the mixed space
because they were derived from wave functions in the pure NAw model space. Its
use in the mixed space results in some double counting. Others have used the bare G
matrix in the mixed space.2? An effective interaction has been obtained from a fit
to data in an (0+2)%w model space, 2*) however, inconsistencies in the methodology
have been pointed out.28) The derivation of a good effective interaction for the
mixed Nfiw model space in light nuclei will be an important future project.

When the WBT interaction is applied to the pure NAw configurations of the N=8
isotones, the pure 1%iw excitations always lie several MeV above the ground state —
there is no parity inversion. However, it is remarkable to find that the 24w excitations
which start out at 9 MeV in %0 quickly come down in energy (8 MeV in 13N, 5
MeV in *C and 3 MeV in !3B) until they become essentially degenerate with the
Ofw configuration in '?Be, ''Li and °He. When the Ohw and 2%iw configurations
are allowed to mix in these three nuclei, there will be two states each with about
50-50 admixture of Ofiw and 2fiw. There are, in contrast, shell-model calculations
for 11Li in which the 24w component is small 27 or absent, 2® due to the fact that
the “shift” problem described above was not taken into account or the 0d1s shell was
ignored. |

Barker 2%) has pointed out the possibility for a mixed (0+2)hw configuration for
the 12Be ground state. One of the most direct radioactive beam experiments which
would test the structure of the 12Be ground state is the pick-up of one neutron
leading to the parity doublet in 11Be (with a resolution capable of separating the
0.32 MeV doublet). A pure Ofiw configuration would lead only to the 1/2- final
state, whereas the mixed configuration will also lead to the 1/2% final state (the
calculated spectroscopic factor is about 0.4). A better experimental and theoretical
understanding of the excited states of 12Be is needed.

The same mechanisms which produce the parity inversion and intruder states in
the Li region are are especially important for the region of 32Mg where the 2hw
intruder states lie several MeV below the O%w energies, giving rise to an “island of



inversion.” The calculations are well documented in the literature 30 3% 32) _ perhaps
theory is slightly ahead of experiment in this region. This region will be interesting
to explore further with new radioactive beam experiments.

It would also be interesting to look for drip-line nuclei which are loosely bound
to one- or two-neutron decay, but whose shell-model structure is simpler — such
as the neutron-rich C isotopes. 33 260 is an interesting case where the 0d1s shell
calculations predict a very small (but not clearly bound or unbound) two-neutron
separation energy. 34 3%)

6 SUPER GAMOW-TELLER TRANSITIONS

The decay rate for allowed beta decay is given by ft,/, = 6170/[(g},/gv)2 B(GT)
+ B(F)] where f is the phase-space factor, t,/, is the partial half-life for the decay to
a specific final state, B(GT) is the reduced Gamow-Teller transition rate between a
specific initial state and a specific final state, B(GT_ ;) =|<f||Z¢ o* t,,_K{[i>|2/(2):+1),
and B(F) is the Fermi decay rate to the isobaric-analogue state. The g /gy is the
ratio of the axial-vector to vector coupling constants for the nucleon as obtained
from the neutron beta decay. GT_,, corresponds to 3-/3+ decay with the nucleon
isospin raising and lowering operators t, and t_, respectively. The sum rule for the
Gamow-Teller transition probabilities is £;B(GT_) — £;B(GT,) = 3(N - Z). There
are many cases where for nuclear structure reasons either B(GT_) or B(GT,) is
small (or zero). For example, for the neutron decay B(GT, )=0 and B(GT_)=3. For
the GT_ transition from 298Pb, which has been studied with the intermediate energy
(p.n) reaction, the GT. should be small (because of the neutron excess) and hence
T,B(GT.)~132. However, for 2°®Pb as well as most other cases observed in nuclei,
the total Gamow-Teller strength is fragmented over many final states, hence the GT
strength to any specific final state is small.

In fact, there are only two transitions to specific final states observed so far which
are larger than the neutron value of 3. They are 0%, T=1, ®He to 1+, T=0, °Li
decay with B(GT_)=4.723%%) and the 0%, T=1, !8Ne to 1+, T=0, !8F decay with
B(GT,)=3.15.37) In both cases the sum-rule values in the 0%w shell-model are six
and the reduction from this value is due to the higher-order correlations beyond
Ohw which give rise to the well-known quenching of GT strength. 37 Also, in both
cases, the final states are ground states and they come low in energy because of the
- attractive particle-particle interaction. As one moves away from the two-particle
valence case and adds more valence particles, the strong GT strength moves up in



energy and eventually becomes a “particle-hole” state in the middle of the shell
which is pushed up by the residual particle-hole interaction. The high energy usually
results in a fragmentation of strength due to mixing with 2p-2h configurations. Borge
et al. 8 have presented the case for “Super” GT strength in the decays of ®He, °Li
and 'Li. However, since the final states lie at a high excitation energy, the strength
is probably fragmented over many final states. Op shell calculations for the ®Li and
"1Li decays show this fragmentation. 3® Op shell calculations3® for the 8He decay
predict a strength of 7.7 for a state at about 9 MeV in excitation, but the experiment
is difficult to interpret because of the large width of the final state.

Where should we look for other Super Gamow-Teller strength? I believe there
are two candidates — 5®Ni and '%°Sn. %®Ni is known to decay to a low-lying final
state in 5¢Co, but the Q value is very small and this particular final state has a very
small B(GT). We have predicted*?) a Super GT to a level just above the Q value with
B(GT)~5.5 which may be studied via the inverse reaction p(**Ni,’Co)n. Also, we
have predicted V) that 19°Sn should beta decay by a Super GT to a low-lying state
in 1%Tn with B(GT)~8.5. .

The GT strength of *°Ni and 19°Sn are both examples of a general class of
transitions in nuclei with N=Z.42) The N=Z nuclei are interesting because the GT
sum rule only gives 3;B(GT-) = £,B(GT,); a result of isospin symmetry. There are
thus several equivalent ways to obtain the B(GT) values in N=Z nuclei; 3+ decay
(where energetically allowed) or (n,p) reactions, 5~ decay or (p,n) reactions, or (p,p’)
reactions. In many cases more than one of these has been observed and compared.
As one approaches 1%°Sn, the beta decay Q values become larger due to the larger
Coulomb displacement energy, hence much more of the GT strength can be observed
in 8 decay. Data for the interesting region between 56Ni and 1%°Sn will rely upon
future radioactive beam experiments. '

The £;B(GT) are thus completely model dependent and tumn out to be extremely
sensitive to nuclear correlations. One observes in the middle of the Op and Odls
shells, that the experimental strength is very small compared to the extreme single-
particle model (ESP) - for example in 28Si, the experimental GT strength is only
about 1/5 of the ESP value. That is, the 28Si experiment is hindered by a factor of
5 compared to ESP. The largest part of this hindrance can be found in the full Okhw
shell-model calculations. But experiment is hindered even with regard to the full
Ofhw calculations 3™ — by about a factor of 1/0.6 = 1.67. From comparison of M1
and GT matrix elements one can deduce that about two-thirds (in the amplitude) of
this comes from higher-order (>0%w) configuration mixing while one-third comes



from the delta-particle nucleon-hole admixture. 43)

Calculations for 36Nj4?) and 19°Sn 41) at the level of 2p-2h correlations indicate
that GT strength in these nuclei should be strong and concentrated into single
low-lying final states. The strength is due to the fact that the orbital with j=¢+1/2
is completely filled and the orbital for j=£-1/2 is completely empty (in the extreme
single-particle model). The results for 1%°Sn are particularly interesting. We
predict*!) a Q value of 7.0 MeV for the decay to a final state at an excitation energy
of 1.8 MeV with B(GT)~8.5 and T,,;0.5 5. The final state is low enough above
the proton decay threshold that it should decay entirely by gamma emission. The
first experimental indications** are in agreement with the prediction, but a much
more accurate experiment with gamma coincidence will be required to determine
whether or not this is indeed an example of a Super GT transition. It is important to
understand the origin of quenching in heavier nuclei. Only recently? has it become’ |
possible to calculate the total GT strength in a full 0f1p shell basis for nuclei such as

56Ni, and we will soon have a better understanding of the role of correlations beyond
the 2p-2h (RPA) level.

This work was supported by the US National Science Foundation under grant
number PHY-94-03666. '
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