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Abstract

We invedtigate the stochagtic Direct Smulation Monte Carlo method (DSMC)
for numericdly solving the collisonterm in heavy-ion trangport theories of the
Boltzmann-Uehling-Uhlenbeck (BUU) type. The fird mgor modification we con-
Sder is changes in the collison rates due to excluded volume and shadowing/screening
effects (Enskog theory). The second effect studied by us is the incluson of an ad-
ditional advection term. These modifications ensure a non-vanishing second virial
and change the equation of date for the scattering process from that of an ided
gas to that of a hard-sphere gas. We analyse the effect of these modifications on the
caculated vaue of directed nudear collective flow in heavy ion callisons, and find
that the flow dightly incresses.

1 Introduction

One of the 4ill most chadlenging quedions in nudear physcs is that of the
equation of state (EOS) of nuclear matter [1]. To investigate the properties
of nuclear matter a high dendties and temperatures, heavy ion collisons ae
of great importance, and various experiments are conducted for that purpose.
The dmulaion of such collisons however is equivdent to solving a quantum-
mechanical many-body problem, which to date is not fully possible. Different
approaches have been made to nevertheess approximate the solution. One
method is thet of Molecular Dynamics (see for example [2]), in this method
both the long-range attractive (soft) and the short-range repulsive (hard) part
of the particle interaction is parametrized by potentids, the trgectories are
continously updated in response to the loca potentid.

Another semi-classcd particle-based method is the BUU approach. Here the
soft pat of the interaction is represented by mean fidds, while the hard part
is given by an explicit collison tem. The collison term itsdf can agan be
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represented in different ways, especially the criteria for a collision to happen
are model dependent. In many codes, this decision is based on geometrical
considerations, for example, a collision is generated at the point of closest
approach between two particles (see for example [3,4]).

One particular implementation of the collision term in BUU codes is the Direct
Simulation Monte Carlo approach (DSMC), see for example Lang. et al. [5],
and Danielewicz [6]. In this approach, collisions are not generated through
geometrical and particle-trajectory based criteria, but stochastically in a way
that the correct collision rate is reproduced. In a collision only momenta and
energy of the particles are changed, while the particles themselves stay in place
until the next advection step - the particles are assumed to be pointlike.

It was suggested that in order to reproduce a Hard-Sphere Boltzmann Equa-
tion, the DSMC approach should be extended by an additional advection that
should take place after any collision [7], and by a modification the collision
probability itself [7,8]. This advection is supposed to push the collision part-
ners away from each other according to their hard-sphere radius, and the
collision probability is adjusted to take into account the excluded volume of
the hard spheres and screening effects. The modified DSMC method is called
Consistent Boltzmann Algorithm (CBA).

In this paper we study the effect of those modifications on the nuclear flow.
In section 2 we describe the theoretical background of our calculations, and
section 3 presents our results and conclusions.

2 Theoretical Background

In the DSMC approach, the positions and momenta of the particles are evolved
in a two-step process, namely advection and collisions, corresponding to one
timestep of the simulation. During the advection step the particles are propa-
gated according to their momenta. During the collision step first the particles
are sorted into spatial cells of volume V. Then out of the n particles within
a given box, at random, m combinations are chosen and scattered with the
probability

W= a(\/}s_\;;mlAt n(n ;1)/2 ’ (1)

where o(+/s) is the energy-dependent elementary hadron-hadron cross section,
N is the number of testparticles representing one nucleon in a full-ensemble
testparticle algorithm [9], At is the timestep length, and vq is the relative
velocity of the particle pair [5]. In the mit V — 0, At — 0, N — oo, the



solutions of this method have been shown to converge to the exact solution of
the Boltzmann equation [10].

This approach does not take into account the finite size of the nucleons; the
testparticles are point-like, and if it was not for the contribution of the mean
field, they would be following an ideal gas equation of state. It has therefore
been suggested by Alexander et al. [7] to include an extra displacement d of
the collisions partners,

d = 1 'U:.—'U,- a(‘\/‘;)

T2l —w, |V

; (2)

v, = v1 — v; being the velocity difference before, and v, = v} — v} being the
velocity difference after the collision. Particle 1 is displaced by d and particle 2
by —d. This additional advection pushes the nucleons apart according to their
hard-sphere radius. It is not obvious right away how this displacement scales
with N. However, as in the mean free path 1/((c/N)(Ng)) of a testparticle,
¢ being the nuclear density, there is no N dependence, the average number
of collisions that a certain testparticle is involved in is independent of N.
Therefore, in order to achieve the same total displacement during the course
of the simulation, the individual displacement per collision should not depend
on N either. The testparticles are therefore pushed apart according to the
nucleonic radius, and not according to the effective testparticle radius.

The finite radius of the particles also makes it impossible for one particle to be
within the “spheres of influence” of the others, and thereby from the available
volume V a fraction

]% : g—vra3 =Vp- %ﬂ'a3 (3)
is occupied, where a is the average radius of the “sphere of influence” of
one nucleon, and n/N is the number of nucleons in the respective box. We
obtain a by randomly picking n particle combinations for a respective box and
calculating their cross sections ¢;(/s;). The Pauli principle is approximately
taken into account by only choosing particle combinations with partners that
are not from the same nucleus, unless at least one of them had scattered
before, and for the remaining combinations taking into account the reduced
phase space volume. With pp being the momentum of the beam per nucleon,
and pr being the Fermi momentum, we obtain for a in this approximation

e e

For small Ej,y,, this effective radius is about (.84 fm, in the range between 100-
400 MeV it is about 0.47 fm. This is slightly larger than what has recently




been suggested in Ref. [11], there, the effective radius derived from delays in
elementary processes is about 0.6-0.8 fm and 0.15-0.3 fm, respectively.

Due to the reduced volume

7= (1_g.§m3)v (5)

alone, a modified higher scattering probability

W==W (6)

< <

has to be used. However, the scattering probability is lowered again by another
effect: the particles are screening each other. A particle might not be available
for scattering with another particle because there might be a third particle in
between. It can be shown [8], that including this effect leads to a reduction of
the scattering probability by a factor of

(1 -0 %was) . (7)

Again, the product ¢ - a® is independent of the number of testparticles per
nucleon N. Including this factor, the modified scattering probability is

W =YEw , (8)
where
1—o-Hra® 1-11659/8 2
YE - 12 — bE = 2,43
1~-p-4mad 1—2bEg ° i ©)

bF being the second virial coefficient as yielded by the Enskog Theory of the
dense hard-spheres fluid [8]; see figure 1.

The implementation of the modifications makes the second virial of the hard
part of the interaction non-vanishing; 4% is positive and therefore leads to an
increase in preasure. This is partly compensated by the negative virial 5 that
is due to the soft (mean field) part of the interaction; see for example {11]. The
equation of state deviates from that of an ideal gas by both contributions, i.e.,

P = kT (1 +o(b®+5)+..) . (10)
One should note at this point that the Enskog Theory is non-relativistic;

both the advection vector d and the excluded volume, therefore also YE, are
calculated in a frame-dependent way.



Fig. 1. The scattering enhancement factor Y¥ as a function of the average Cross
section. Shown is Y7 for p = 1,2, 300.

3 Results and Conclusion

Our numerical calculation is based on the MSU BUU-code by Bauer et al.
[4] which was modified from a geometrical formulation of the collision term
to a stochastic formulation according to Ref. [5]. Only NN collisions were
taken into account, which for the energies considered turned out to be a jus-
tified approximation. A full-ensemble and a parallel-ensemble implementation
proved to have similar results; results for different systems were compared with
both Refs. [4] and Ref. [12]; they were found in satisfactory agreement. An
interesting side-result at this stage however was that changing the algorithm
from geometrical to stochastic scattering increased the frame-of-reference de-
pendence of the result: when running the simulation within the lab-frame we
found an asymmetry in the flow which we attribute to the fact that in this
frame the projectile is Lorentz-contracted and the target is not. Therefore
within a spatial box inside of the overlap-zone of the two nuclei there are
many more testparticles originating from the projectile than from the target,
resulting in an asymmetry of the respective scattering rates. We are currently
trying to overcome this problem by y-dependent modifications of the scatter-
ing probabilities, however, so far with only little success. The flow-asymmetry
vanishes when the calculation is performed in the c.m.-frame, which is what
we did in this work. The geometry-based code did not appear to be sensitive
to this asymmetry, however, Lorentz invariance certainly still is an issue [13].
Finally the full-ensemble version of the stochastic code was modified according
to Ref. [7], and the scaling of the collision rate and the flow with the number
of testparticles N was checked.

We simulated an (Au,Au)-collision at projectile energies of 250 and 400 MeV,
and b =3 fm over a total time of 70 fm/c. The timestep length was 0.1 fm/c,
the volume V' was approximately 1.8 fm3, the number of testparticles per



Fig. 2. The nucleon configuration in the reaction plane at different times during
the collision, shown is g(z,y = 0,2). The two columns of panels on the left refer
to the 250 MeV collisions, the two columns on the right to the 400 MeV collisions.
Within those columns the respective panels on the left result from an unmodified
simulation with point-like nucleons, the panels on the right from a hard-sphere
simulation according to Ref. [7]. The difference is hardly visible, even though from
the two latest panels one gets the impression that the nuclei disintegrate slightly
more violently with the new algorithm.

nucleon N was 250, m in equation (1) was chosen to be n2, and we used a soft
momentum-dependent equation of state. Figure 2 shows the evolution of the
configuration in the reaction plane, plotted is the nuclear density p(z,y = 0, z).

The result for the unmodified algorithm is shown on the left, the result for
the modified algorithm on the right, respectively. As expected, the nuclei dis-



Fig. 3. Collision rate for a 250 and 400 MeV (Au,Au) collision with & = 3 fm
versus time. The solid curve refers to the unmodified simulation, the dashed curve
to the modified one. For the 250 MeV collision two dotted lines were added, the
upper line refers to a calculation where only the scattering enhancement was taken
into account, the lower line to a calculation that only incorporated the additional
advection.

integrate slightly more violently due to the additional advection, resulting in
a lower nuclear density. A calculation with the additional advection alone re-
vealed that therefore also the collision rate decreases. However, this is partly
compensated by the modified scattering probability Eq. (9). On the other
hand, a calculation with the modified scattering probability alone shows a
strongly enhanced collision rate, as expected. The upper panel of figure 3 il-
lustrates this for the 250 MeV collision, the lower panel shows the collision
rates for the 400 MeV collision.

Figure 4 shows the average final transverse momentum versus the reduced
rapidity as an indicator for nuclear flow. From the slope at zero transverse
momentum one concludes that in this specific simulation the flow increases
by approximately 16% for the 250 MeV collision, and 5% for the 400 MeV
collision, with the introduction of the new algorithm. Introducing only the
additional advection, as already pointed out, the collision rate slightly de-
creases, however, the nuclear flow increases by about 8% for the 250 MeV
collision. With the introduction of the modified scattering probability alone,
the flow increases by about 13%. The fact that the contributions from both
modifications do not “add up” indicates that a perturbative approach to their
representation would not be justified.

An impact parameter averaged analysis for 250 MeV collisions with < 5
fm resulted in approximately 132 MeV/(¢-Unit of Reduced Rapidity) nuclear
flow for the unmodified, and 148 MeV /(c-Unit of Reduced Rapidity) for the
modified algorithm (12% increase). The Plastic Ball data indicate approxi-



Fig. 4. Average final transverse momentum versus reduced rapidity of the protons in
a 250 MeV (upper panel) and 400 MeV (lower panel) (Au,Au) collision with b = 3
fm. The reduced rapidity is the rapidity Yim devided by the rapidity of the beam,
which for the 250 MeV collision is approximately 0.36, and for the 400 MeV collision
approximately 0.45. From the slope of a linear fit around the origin, one can deter-
mine the nuclear flow. The circles and the solid fit refer to the unmodified, the stars
and the dashed fit to the modified algorithm. For the 250 MeV collision, the flow is
~ 147 MeV/(c-Unit of Red. Rap.) for the unmodified, and ~ 170 MeV/ (e-Unit of
Red. Rap.) for the modified algorithm. A calculation that only took into account
the scattering enhancement resulted in ~ 166 MeV/(c-Unit of Red. Rap.), a cal-
culation that only incorporated the additional advection in ~ 159 MeV/ (c-Unit of
Red. Rap.). For the 400 MeV collision, the flow for the unmodified algorithm is s
185 MeV /(c-Unit of Red. Rap.); for the modified algorithm it is &~ 195 MeV /(c-Unit
of Red. Rap.).

mately 130 MeV /(c-Unit of Red. Rap.) {14] nuclear flow, the EOS data only
119 MeV/(c-Unit of Red. Rap.) [15]. For 400 MeV collisions the same calcu-
lations resulted in in approximately 166 MeV/(c-Unit of Red. Rap.) nuclear
flow for the unmodified, and 185 MeV/(c-Unit of Red. Rap.) for the modified
algorithm (11% increase; Plastic Ball: &~ 169 MeV/ (c-Unit of Red. Rap.) [14];
EOS: & 151 MeV/(c-Unit of Red. Rap.) [15]).

Overall we found the effect of the additional advection and the modified scat-
tering probability to be significant, but not crucial. Their implementation
moves the outcome of the simulations away from the experimental results.
This indicates the need for an in-medium reduction of the NN cross section.
This type of reduction was first found to be needed in studies of the disappear-
ance of flow [16] and later also in theoretical studies based on thermodynamic
T-matrix theory at finite temperature [17]. These results were obtained by
algorithm with closest approach techniques. If one wishes to address the ques-
tion of the nuclear equation of state with a DSMC algorithm, however, the
corrections discussed in the present paper should be taken into account.
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Fig 1, Kortemeyer
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Fig 2,
Kortemeyer
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Fig 3, Kortemeyer
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Fig 4, Kortemeyer
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