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Abstract

In connection with the superconducting cyclotron program
at M.S.U. a feasibility study of axial injection, aimed
mainly at the K-800 cyélotron, has been carried out.

The results encompass all major aspects of a working
system; i.e. center region, injection trajectories and phase
. Space matching. It is shown that axial injection is indeed
feasible, although problems ekist not ordinarily encountered
in conventional A.V.F. cyclotrons.

The possible solﬁtions and limitations are presented

and discussed in detail.



Introduction

A large amount of research and development has been
carried out recently in various laboratories, concerning
new types of heavy ion sources for accelerators. Noteworthy
results have already been reported for EBIS(l) and E.C.R.(z)
sources. Both of these sources, although using quite dif-
ferent physical principles, aim at'producing high charge
states for light-medium, and more in perspective, ve;y heavy
ions.

Even though a substantial development work must still
~ be carried out, the results so far obtained are very encouraging.
In particular, it looks like the E.C.R. source is already
at the stage where high charge states of ions up to mass
~40 can be produced with reasonable intensities. This fact
has enticed several laboratories with A.V.F. cyclotrons(3'4'5'6'7)
to provide themselves with such sources which will be used
via an axial injection system.

In connection with the superconducting cyclotron program
at M.S.U., we have undertaken a feasibility study of axial
injection into superconducting cyclotrons. Axial injection
at moderate iﬁjection voltages (tens of kV at most) seems
in fact the most practical wey to use these sources also
in supercondueting cyclotrons. The advantages of such source
with respect to the conventional PIG sources seem, oOn paper,
impressive enough in terms of either intensities or high
charge states to warrant such a study.

The goal of the present investigation was not to produce

a detailed design of an actual axial injection eystem, but



rather to identify the main physical problems and find out
realistic solutions. The peculiar characteristics of super-
conducting cyclotrons, like the very high magnetic fields,
limited clearances in the center etc., suggest in fact that
problems may be more complex than those already solved in
conventional A.V.F. cyclotrons.

In the process we have obtained results which do have
a general validity and should therefore hold for any super-
conducting cyclotron where axial injection is attempted.
It is the purpose of this paper to present them in some

detail.

l. General Outline

‘This study has been mostly connected with the K-800
cyclotron, whose desigh parameters are extensively reported
elsewhere. (8) For the sake of clarity, Fig. 1 shows the
operating diagram‘of the cyclotron in the (Bo,q/A) plane,

B, being the center field value and g/A the charge to mass
ratio of the ion accelerated. 1In this context we have chosen

the following two representative ions:

- a.fully stripped light ion, g/A=.5, with a center field
B, of 34;6 kgauss, which corresponds to an energy of
200 MeV/n.

- -a high charge state (46+) uranium ions, at a center
field B, of 47.5 kgauss, with a final energy of 45

MeV/n.
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As will be apparent later, the analysis of these two

cases encompasses, at least from the point of view of magnetic

field properties, most of the machine operating range.

The axial injection scheme is presented in Fig. 2 just

to show the physical dimensions involved. Since a detailed

analysis of the single components and their purposes is

made later on, only a few comments are in order:

i)

€

ii)

iii)

The injection is assumed to start at z = 100" from

the median plane, where the magnetic field produced

by the cyclotron is practically zero. Farther away,
therefore, "conventional" beam optics is assumed.

Proper matching to the cyclotron acceptance, and adequate
beam transmission through the axial hole can be achieved
either with a long solenoid, or a couple of einzel
lenses (see Sect. 4, 5). - A set of deflectors (see

Sec. 3) is needed to steer the beam off axis before

it enters the plug.

For the purpose of the present study, an electrostatic
mirror (9+10) has been selected as inflector of the

injected beams into the median plane. Although other

'types of inflectors, like hyperboloid-shaped channels(ll'lz)

have been proposed and éctually used in A.V.F. cyclotrons,
the mirror seemed to us, for the time being, quite advanta-
geous both because of its straightforward operating

mode and easy construction.

Scaling of the trajectories throught the mirror demands

that (See App. A):
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where p is the curvature radius, V, the injection voltage,

inj
B0 and q/A have been just defined. The values of p, at
different injection voltage, for the two representative
ions chosen, are listed in Table I.

Consequently the beam transmission, and phase space
matching have been ihvestigated at'Vinj = 15, 20, 25 kv
for the g/A=.5 ion and correspondingly at 10, 15, 20 kv
for the 467 uranium ion. The choice of an upper limit around
25-30 kV avoids too high voltages on the mirror, given the
" available clearances. The factor of two voltage variation
ensures that beam optics does not depend critically upon
the injection energy, which can thereforé be chosen sub-
sequently on the basis of other criteria.

We now discuss first theAselection of a suitable center

region geometry, and turn thereafter to the problems associated

with the injection itself.

2. The central regioﬁ

A full analytical treatment of the mirror, including
the effects of inflection on the phase space is given in
App. A. Mirror parameters have been chosen by taking as
reference case the q/A=.5 ion, injected at 20 kV in the
field B, = 34.6 kgauss with a corresponding p = 8.322 mm.
By posing an upper limit of 50 kV/cm for the electric field

in the mirror, the following parameters are obtained:



- angle of the mirror grid with the median plane a = 47.5°

- distance between grid and electrode D = 3.75 mm
- mirror voltage V = 18.6 kV
- Distance from the injection axis to the exit point,

projected on the median plane, Ry = 6.15 mm.

With these discussions, the mirror structure consists
of an outer cylindrical shell, at ground potential, of 25 mm
outer diameter, and 1.5 mm thick wails. A 3 mm clearance
exists between this shell and the high voltage electrode,
which has thus a 16 mm diameter.

These dimensions have been used in connection with’
the center region studies. We recall that the accelerating
structure of either the K = 500 or K = 800 machine consists
of three dees in the valleys. Consequently, clearances
to ground are very tight and the problem of designing a
center region geometry which produces a centered beam usually
requires a number of iterative steps. We refer to (13)
ﬁor further details on the center region when an internal
ion source is used. In the case of the axial injection
the key issues, once the mirror is selected as inflector,

are:

i) whether ﬁhe latter can be positioned on the axis of
the magnet, or off the axis, in order to get a centered
beam.
ii) the range of injection voltages compatible with a centered

beam, clearing all electrodes existing in the center.



In this context the present center region studies
are of rather qualitative nature, just to provide answers
to the questions above. Nevertheless, electrolytic tank
measurements had to be carried out, in order to have a
realistic mapping of the electric field.

Two main geometries were tried, i.e. either with the
mirror on the magnet axis, or off the axis. It is assumed
that a 100 kV peak dee voltage will be used, which requires
at least 1 cm (or 1/2") clearance between electrodes.

We did not find any good solution with a mirror centered
on the axis. An example of such a geometry is shown in
'Fig. 3, for a q/A=.5 particle, at an injection voltage of
20 kV. Although the center ray is centered within a few
tenths of mm after several revolutions, ths solution looks
unrealistic, because the ion spends almost an entire revolution
in the region between mirro; ahd electrodes, being subject
there to large transversal electric fields. This gives
rise to instabilities as a function of the starting phase.

One cannot rule out, of course, that with a totally
different geometry or else raising considerably the injection
energy, a more realistic solution can be obtained. We did
prefer; however, to investigate the possibility of off-axis
. injection also because the latter presents problems not
usually encountered. in conventional A.V.F. cyclotrons.

Off-axis injection proved in fact successful. Examples
with a 25 mm diametér mirror, off-axis by about 10 mm, are
shown in Figs. 4, 5, 6, for the g/A=.5 ion, at three different

injection voltages of 10, 20, 30 kV respectively. A centered
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beam is obtained in all cases, but it is clear that 20 kV,
for this particular ion, is close to the lower practical
limit for clearing the mirror.
It should be remarked that the center region presented
here has been adapted, for use with the off-axis mirror,
from the one used with the internal ion source. No optimi-
zation effort has been made and it could certainly be improved.
Therefore, even though these data on the central region

should be considered as only qualitative, it's clear that:

- off-axis injection looks more favorable if a mirror
is used.

- the off the axis displacement is of the order of 10-
12 mm at most.

- the range of useful injection voltages, for the Q/A=.5
ion is probably between 15 and 30 kV. .The voltages

for all other ions can be obtained by scaling according

to eq. 1.

3. Beam injection

3.1 The magnetic field in the hole

The conclusion, from center region studies, that off-
~axis injection is perhaps necessary raises the question
of how this can be accomplished, if at all.

In fact the magnetic field along an axial hole in a
superconducting cyclotron is very different from that of

conventional A.V.F. cyclotrons. This can be seen in Fig. 7,



where the fields for several coil excitations, are plotted
as a function of the distance z from ;he median plane.

These fields are calculated with the program TRIM(14) and
should be accurate to better than 1%. The geometry to which
these calculations refer is shown in the figure itself.

It corresponds to the one of Fig. 2, except for the center
plug length, which extends only up to 11.5" from the median
plane.

As seen from the curves of Fig. 7, the field is chara-
cterized by a sharp.gradient near the median plane, as in
conventional A.V.F. cyclotrons, and by another sharp peak
“at the plug end. Afterwards the field decreases almost
linearly along the axis, untii another peak, this one of
small amplitude, is found aﬁ the yoke exit.

The analysis of the various contributions to this peculiar
field behavior is presented for one excitation only in Fig. 8.
The long linear "tail" comes from the coils themselves,
while the plug is responsible for the sharp peaks up to
12" from the median plane. The rapid field decrease between

12"-14" and 20" is due instead to the yoke.

3.2 Center ray trajectories

The gradient of B, along the axis gives rise to a B,
component, off the axis, which to first order can be written

as
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were r is the radial distance from the axis.

The existence of strong B, components all along the
hole, as apparent from the curves of Fig. 7, establishes
a magnetic axis essentially coincident with the coils axis
and which cannot be displaced.

Attempts to inject the beam off-axis without correcting
the center-ray trajectories are therefore bound tb,fail.
Typically a center-ray with p, = P and 10 mm off the axis
at z = 0", as required for proper injection, when traced
" packwards up to z = 100" is 20-25 mm further away off the
axis, with both pg and py different from zero, and (x,Y)
coordinates dependent upon the particle energy. Therefore
a special scheme must be devised for injecting the beam
off the axis at the median plahe. The simplest one, and
the one we have studied in detail, envisages a beam injection
along the magnet axis; until close to the plug entrance.

At that point a suitable set of deflectors, as sketched

in Fig. 2, swings the Beam off-the-axis in such a way that
it reaches the median plane (z = 0") with p = P, at the
desireé (x # 0, ¥ # 0) point. For simplicity we have chosen
_the latter point as y = 0 x = 10 mm, i.e. with a 10 mm off-
axis displacement. The same consideration would apply.

of course, to any given (x,y) point.

The equations of motion in the presence of electric
and magnetic fields, are reported in ApPP. (B), together

with their linearized expression which is, to first order,

10



quite sufficient. It is easy to see from eq. (B8) of App.
(B) that in order to have a certain set of x and y values,
and Py = py =0, at z = 0", four independent deflecting
fields, Exl, Ex2, and Eyl, Ey2 are necessary. Although
the calculations reported here have been checked rigorously
by integrating the non-linear set (B3), the use of the linearized
equations gives a good starting point.
A sketchvof a possible deflector geometry is shown
in Fig. 9. Two sets of parallel plates give, for each de-
flector, én independent E . EY control. Uniformiéy of the
fields on the spatial range needed by the beam has been
" checked with TRIM, and found out to be better than 1%-2%,
which we consider acceptable.
Should more detailed studies prove that this is not
the case, they could obviously be substituted with four
more conventional deflectors, éach one consisting of a single
set of parallel plates.
The results of center-ray tracking through this system
are shown in Fig. 10, all the details being given in a straight-
forward way on the figure itself. The trajectory, for a |
9/A=0.5 ion, and 20 kV injection voltage, is on the magnet
axis up to the deflectors, which are located just before
~the plug. It is bent afterwards in such a way as to reach
the median plane off-axis in the required position. The
vector radii of the trajectory, connecting its points to
the z-axis, are also shown in order to clarify the spatial

behavior. More detailed examples will be discussed, for

the final geometry, in Sect. 4.

11
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Having thus ensured the possibility of injecting off-
the-axis, the guestion remains as to whether the plug itself
should also be off the magnet axis, or not. The first option
obviously introduces a disturbing first harmonic on the
magnetic field, which could be éompensated but at the cost
of a higher mechanical complexity.

Phase space tracking allows a selection between the
two different options. This is shown in Fig. 1l1. Uncoupled
and symmetric (x,px) and (y,py) phase spac§s aré ﬁracked
backwards from the median plane: in the (x,px) plane we
represent both the phase space figures directly associated
" to the (x,px) coordinates (solid line) and those deriving
from the (y,py) phase space (dashed ling) via the magnetic
field coupling which generates a rotation around the axis.
The results are shown at different distances z from the
median plane. |

The beam on-axis, plug on-axis configuration (bottom
strip), corresponds to on-axis injection and should be assumed
as a reference in the sense that phase space distortions
cannot be smaller. Some severe distortions are indeed ob-
served in the beam off-axis, plug on-axis case, top strip.
Howevef, the presence of similar distortions also in the
beam off-axis, plug off-axis case, middle strip, led us
to analyze in more detail their causes. It was found that
it is the sharp field gradients produced by the plug which
are mostly responsible for their appearance, and the plug

geometry had therefore to be optimized for this purpose.

12
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3.3 Plug geometry optimization

Tapered plug geometries have been tried in order to
reduce the field gradient at the plug entrance. An example
is shown in Fig. 12, at the excitation needed for the g/A=0.5
ion, at B, = 34.6 kGauss. As quite evident, and contrary
to what intuition would suggest, it is the plug no. 2, i.e.
with a reverse tapering, that has a beneficial effect on
said gradient. This indicates that the latter is actually
due to magnetic field lines from the larger hole concentrating
on the plug entrance. Consequently the plug should be long
- enough as to terminate in a region where the B, magnetic
field is sensibly lower.

A plug extending up to 18" from the median plane produces
the field shown in Fig. 13, the coil excitations being the
same of Fig. 12. The gradiené is indeed quite reduced,
and by suitable tapering one could obtain even the curve
labelled "smoothed". It has been checked, however, that
at these very reduced gradients no sensible differences
exist between the phase spaces if either of the two fields
is used.

Consequently the long plug has been selected. The
field along the hole at the excitation needed for the pdet,
at B, = 47.5 kgauss is shown in Fig. 1l4. 1In this case also
the gradient at the plug entrance is quite reduced, as can
be seen by comparing with Fig. 7.

The deflectors needed to perform the off-axis injection

are therefore located before the plug entrance and are 4"

13.
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long. The first set is located between 20" and 24" from
the median plane, and the second between 25"-29".

The center ray trajectories are shown, for the two
representative ions, in Fig. 15, other details being given
on the figure itself. In order to better visualize the
spatial extent of the trajectories, their projections on
the (z,x) plane and (x,y) plane are presented in Fig. 16.
In order to inject at 10 mm off-axis in the x direction,
the ray must go about 12 mm off axis in the y-direction
as well as 15 mm off axis in he x-direction. This takes
place essentially in the deflectors, as can be judged by
"the (z,x) projections, and therefore these numbers define
the minimum spatial extent of the deflectors themselves.

With this optimized plug design, phase space tracking
shows no sensible differences between the cases where the
beam is injected along the axis or off the axis. This is
shown in Fig. 17 for the g/A=.5 ion, where the top and bottom
strips can be compared at every distance from the median
plane. A somevwhat larger distortion is observed in the
case of the U46+, Fig.vls, but it is also seen that the
phase space recovers after z = 35", i.e. after the deflectors
are traversed.

As a consequence we have chosen to study the phase
space matching problem with the geometry just discussed,
assuming that no off-axis displacement of the plug will

be necessary. This choice eliminates problems of first

14
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harmonic correction, and makes the field geometry independent
of the center region geometry, i.e. the optimum position
of the mirror for centering purposes can be chosen without

affecting the magnetic field.

4. vBeam transmission through the yoke

4.1 General considerations

In this section we investigate the problem of beam
transmission through the yoke, from the injection point
(I.P., at z = 100") down to the mirror entrance. The latter
. Practically coincides with the median plane. This problem
is obviously related to the more general question of phase
space matching between the external source and the cyclotron.
The latter topic deserves, however, a very careful and rigorous
analysis which must include also the inflection into the
median plane, and is carried out in Sec 5.

Presently we shall therefore limit ourselves to a dis-
cussion of the optical elements which can be used in order
to have a well-confined beam in the path through the yoke

bore. The calculations described below assume the following -

o= a beam emittance, at I.P., of 300 mm mrad in both

the (x,px) and (y,py) phase subspaces, assumed uncoupled.
From the available data‘l®) it seems that emittances

of 300-400 mm mrad in both transversal phase spaces

at 10 keV/n are realistic for the mentioned ion sources,

and fully stripped light ions. Since cyclotron accept-
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ances are at least that large, a reference value of
300 mm-mrad has been assumed.

- double waist requirement, at the median plane, with
half-width of 1. mm, in both phase spaces.

- range of injection voltages, as discussed previously,
of 15 < V; 5 < 25 kv for the ion with q/A=0.5, and

10 < Vinj < 20 kv for the uranium ion.

These assumptions are made merely to exemplify the
beam behavior in the yoke transversal, under realistic cons-
traints. As already outlined in Sec. 3, a strong coupling
‘between the (x,px) and (y,PY) phase spaces will take place
along the injection path, physically due to the rotation
of the ions around the z-axis. An increase in phase space
varea can therefore be expected. However, as_stated above,
we shall present here only the results from the point of
view of beam confinement, postponing a more complete dis-
cussion to Sec. 5.

That some optical elements will be needed along the
injection path just to confine the beam can be readily seen
from Fig. 19. 1In this figure the beam envelopes, traced
backwards from the median plane under the assumptions just
listed, are shown for both representative ions and three
' selected injeétion voltages. The beam exhibits a tight
confinement, with characteristic oscillations in the envelope
amplitude, up to 30"-40". There, dependiné upon the ion,
the magnetic field is still 26-15 kgauss. The wavelength
of the oscillations, A, increases as a function of z, as

expected from the formula

16
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BA = 2H(Bp)ion (3)

As seen from the figure, the magnetic field in the
hole is not by itself sufficient to keep the beam confined
within acceptable limits up to the injection point at z = 100",
especially so in the case of the g/A=0.5 particle. This
finding is independent of any requirement on phase space
matching.

We have looked into three possibilities for achieving

a satisfactory beam confinement:

quadrupoles
- solenoids

- einzel-lenses.

The first one was quickly discarded, mainly because
of the difficulty of predicting quadrupole strengths when
the latter are immersed in a several kgauss longitudinal
field. The tests we ran showed that the coupling between
the two transversal phase spaces becomes rather involved
and in any case simpler elements like solenoids or einzel-
lenses proved more than adequate. We shall discuss first

the results obtained with a solenoid.

4.2 Beam confinement with solenoids

Solenoids of various lengths produced, for the g/A=0.5
ion, the results shown in Fig. 20. As listed in the figure,
the solenoid field is low, and corresponds roughly to one

wavelength of envelope oscillation. The confinement effect

17






is sharp, the maximum beam halfwidth reaching about 17 mm,
which is quite acceptable. Also, as can be appreciated
from the envelope, the beam is very close to a waist at

the injection point. The differences in beam amplitude
between the three cases do not warrant however, in our view,
the choice of a solenoid longer than the shortest one shown,
which extends between 60" and 80" distance from the median
plane.

The reason of choosing the latter is that in the case
of the K-800 cyclotron the solenoid is fully outside the
yoke, which reduces considerably any mechanical problem
for its constructibn.

If the magnetic field in the solenqid is increased
to produce two or three wavelengths oscillations, Fig. 21,
no sizable advantages are gained in terms of beam confine-
ment. The beam size is more Qr-less the same at the injection
point, as exgected from elementary arguments, while the
field has to reach the few kgauss level.

The short solenoid with the minimum field required
for one full oscillation looks therefore the best choice.
When checked as a function of the injection voltage, Fig. 22,
the beém is still well confined. 1t should be remarked
that the fields listed in the figure itself do not, and
cannot, scale according to the particle energy because of
the additional requirement that we have a waist, or close
to it, at the injection point. This in order to simplify,

whenever possible, matching problems.

18
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In fact, as can be seen in Fig. 23, in the proximity
of X = 1 one can vary the field around that required for
the waist condition at the injection point (solid line),
if for matching purposes one prefers to have a converging
beam (dot-dash line), or a diverging one, (dashed line).
In any case the solenoid keeps the beam confined at about
the same width.

The envelopes for the case of the uranium ion, at the
three seleéted injection voltages, are shown in Fig. 24.
The beam confinement is obviously much better, because of
the large intrinsic field in the hole, but the other character-
istics remain qualitatively the same.

Turning now to a preliminary analysis of the phase
space behavior for the central cases, i.e. gq/A=.5 at Vinj=20 kv
and gq/A=.19 at Vinj=15 kv, itlis shown in Fig. 25 both at
the injection point and at the median plane. They correspond
strictiy to the envelopes discussed previously, all details
being given in the figure itself.

Here, as in all similar figures reported later, only
the (x,px) space is pfesented, the beam being symmetric
in thé two transversal subspaces. The solid line corresponds
to the‘total phase space, which includes coupling, the dashed
one to the (x,px) component, the dotted one to the (y,py)
component showing up in the (x,px) plane because of the
coupling.

We obéerve indeed an emittance increase due to the

coupling, which in this particular case is rather limited.

19.
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At the median plane a waist of the required dimensions is
nevertheless obtained. |

| ‘The phase spaces for different injection voltages are
shown for both ions in Figs. 26 and 27 respectively. The
features just discussed above can be easily recognized.
It will be noted that only in the case of the uranium ion
with 20 kv injection voltage we are unable to start with
a waist also at the injection point (z = 100"), but we need
there a converging beam. This beam, as well as the waists
needed in all other cases, should however be easy to produce
with any transmission line between the ion source and the
" injection point.

As a summary, the single solenoid, 20" long, and with
magnetic fields not exceeding 1-1.5 kgauss seems a rather
good solution to the beam confinement problem. Given the
low field, this solenoid could be either superconductive
or conventional, although the superconducting solution with

a cold bore is in our view more attractive.

4.3 Beam confinement with einzel lenses

The use of einzel lenses has also been investigated
under the same assumptions, élthough not in as much detail.
We have found that two einzel lenses are necessary
for the g/A=0.5 ion, while only one is needed for the uranium
case, due to the higher intrinsic beam confinement. The
beam envelopes are shown for‘both ions in Fig. 28, where

also the lenses positions and voltages are given. A voltage

20
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of 10 kV is sufficient to focus the beam, and a waist is
preserved at the injection point. The corresponding phase
spaces are shown in Fig. 29, and they can be directly compared
with those of Fig. 25. The overall characteristics, including
the emittance increase, are very similar to the solenoid

case.

It can be noted, e.g. looking at the figures for the
uranium ion, that the type of coupling obtained at the median
plane between the (x,px) and (y,py) phase spaces is rather
different, visually, in the case of the solenoid and of
the einzel lens. However the net result in terms of the
" effective emittance, and its area, as seen at the cyclotron
median plane is strictly the same. This result will be
fully justified in the next section.

In summary a system of two einzel lenses also provides
a suitable confinement method. 1In principle then the choice
between the two can be left entirely to construction or
cost considerations. However, as will be seen in the next
section, the solenoid looks simpler and more effective when

phase space matching is fully taken into account.

5. Phase space matching

5.1 Theoretical analysis

We shall consider in this section the general problem
of matching the injected beam emittance to the cyclotron
acceptance. The former, here and in the following, is intended

as the emittance at the injection point, where the magnetic

21
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field is zero, namely, in our case, 2z = 100". The cyclotron
acceptance is defined at the inflector exit, i.e. at that
position on the cyclotron median plane where the acceleration
process begins. As we shall see in the following, and physically
intuitive, both the yoke traversal and the inflection process
must be considered in order to have a meaningful analysis.

In other words, the inflection is far from negligible in
determining the phase space behavior and in fact it plays

an almost dominant role,.

in principle one would like to have:

- uncoupled (x,P.): (y,py) phase spaces at the injection
point (z = 100"). The ion source or a normal beam
transport line will in effect usually produce such
uncoupled phase spaces.

- uncoupled (g,px), (y,py) phase spaces at the inflector
exit, matched to the cyclotron eigenellipse at that
point.

- no beam emittance increase, in either subspace, between
the injection point and the mirror exit.

- a well confined beam along the injection path.

Wé have already seen in Sec. 4 how the last require-
ment can be fulfilled. As for the first three, we recall
that the longitudinal B, field component couples very strongly
the two transverse subspaces, via the particle rotation
around the z-axis. This effect does not, in general, forbid
the possibility to achieve the desired matching to the cyclo-

tron acceptance in terms of the posture of the phase space
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figures (e.g. waist or else). However, it will usually
bring about an increase in the effective beam emittance
and should therefore be carefully analyzed.

Strictly speaking, the notion of "phase space area",
is defined only for a canonical set of coordinates. as
explained in App. B, the usual linear (x,px) and (y,py)
coordinates coincide with the canonical coordinates (x,Px)
and (y,Py) when there is no coupling between the two subspaces.
In this particularvcase they coincide only when the longi-
tudinal field component is zero, namely at the injection
point (z = 100") and at the inflector exit. Of course we
" can always define, even in linear coordinates, an invariant
four-dimension phase space volume (x,px(y,py), but this
is seldom of any value.

| The phase space behavior of the beam can therefore
be best studied using canonicél coordinates and considering
at first separately the two main parts of the beam path,

namely:

A. motion in the hole up to the inflector entrance

B. passage through the inflector

A. Motion in the hole up to the inflector entrance

The coupling between the transverse. subspaces persists
even if the canonical coordinates (x,P) and (y,Py) are

used. However the coupling can be eliminated by using a

23



rotating Larmor frame (&,B. ), (n,Pn). That is to say, if

g

the canonical set of coordinates is rotated, at any given
distance along the z-axis, by an angle u(z) expressed by:
z2 g Bz(z)

az (4)
I

o[

pl(z) = -

This angle of rotation is determined only by the integral
of the longitudinal B, field component, since we can trans-
form eq. (4) in:

1 Zz Bz(z)

wz) = 5= [ az (5)
20 zo Bo |

where p is the radius of curvature of the ion and B, is

the field value at z = 0". In other words, using eq. (5)
we can determine the necessary rotation angle at any A
and in particular at the mirror entry, in order to have

a decoupled beam in the proper Larmor frame. A few comments

are in order:

i. The angle of rotation p is obviously taken as 0° at

the z = 100" point.

ii. As a consequence of eq. (5) the transfer of a beam
from a point with B, = 0 to a point with B, # 0 can
be made without increase in the canonical subspace
areas (x,Px) and (y,PY), only if a rotating frame with
I as given by eg. (5) is used. However, there will
always be a nonconservation of the areas in the linear
subspaces (x,px) and (y,py), which is physically due
to the mentioned coupling between the two transversal
subspaces.

24



iii. A control of the rotation angle y can be accomplished
by any dey@ce, like a solenoid, which produces a longi-
tudinal field component. This will be discussed later

in a quantitative way.

A particularly simple case, which illustrates well

the kind of linear phase space area increase to be expected,
is when a symmetric beam (in the two transversal subspaces)
is injected at z = 100", and a symmetric beam is obtained
at z = 0". As we have seen in Sec. 4, this can be achieved
by either a solenoid or a system of einzel lenses. 1In this
‘case the angle of rotation J, because of the symmetry of

the beam, plays no role and the emittance transformation

in the usual linear coordinates can be easily calculated

using eq. B-16 of App. B. The result is:

4
r
e -\ady e 2
whefe €inj is the injected phase space area of the uncoupled
and symmetric beam at z = 100" with divergence expressed
in :gdiansgrb is the beam size (halfwidth) at the median
plane énd p is the ion radius of curvature in the B, field.
~This effect, thch does not depend at all on the details
of the magnetic field along the injection path, fully justifies
the results obtained in Sec. 4, which dealt, as will be
recalled, with symmetric beams in the two transverse subspaces.
Coming back to the general gquestion of phase space

increase, one might argue that the ultimate result of the
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entire injection is to let the beam go between two points,

i.e. z 100" and the median plane via a 90° deflection,
where the longitudinal component of the fields is zero.
That is to say that in these two points linear and canonical
phase space areas coincide. One could think, then, that
it may be possible to inject and deflect the beam into the
median plane in such a way as to eliminate the coupling
between the two transversal subspaces and, ultimately, the
vafiation of the phase space areas.

It is therefore necessary to carry out a careful analysis
of the behavior of phase space in the inflection process.
" As we shall see, this depends very much upon the kind of

inflector chosen. The considerations which follow are made

for a mirror.

B. Passage through the inflector

It turns out that it is relatively easy to express
the transfer matrix of the mirror when linear coordinates
are used. This is shown, and the matrix given, in App. A.
As a consequence, an easy way to obtain the linear (x,px)
(z,pz) phase spaces at the mirror exit is by the following

procedure:

- the beam at the mirror entrance is expressed in the
Larmor frame coordinates (5PE)(n,Pn), rotated by the
angle u in order to assure decoupling (See ApPP. B).

- the canonical coordinates are transformed into linear

coordinates. (matrix T)
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- the latter coordinates are rotated by an angle -y.

(matrix R)

- the mirror transfer matrix M (in linear coordinates)

is applied.

Symbolically we can write:

x £
Py =M.,R.,T P
2
n
P
V4 pn

The total transfer matrix thus obtained has obviously
Det = 1, to obey Liouwville's theorem. Also, in order to
give at the mirror exit a aecoupled beam; and therefore
a zero increase in the subspaces areas, the matrix should

‘be of the form:

ajq ' ajo 0 0
1 3y 0 0
0 0 a33 a34
0 0 a3 Ay

It turns out that in the case of a mirror this is impos-
- sible whatever angle u is chosen. 1In this respect let us
just recall that y is in principle variable at will if a
solenoid is used along the injection line.

As a consequence an increase in the phase space area,
due to coupling, must be expected. 1In the following para-
graph we shall present detailed numerical calculations

concerning this effect.
27



5.2 Phase space increase: numerical results

In order to give results of genefal validity we have

made the following assumptions:

- injection, at z = lOd", of an uncoupled beam in the
two transverse subspaces.

- requirement, at the mirror exit, of waists in both
linear phase spaces. Their size should not necessarily
be equal in the (x,px), (z,pz) planes.

- accordingly we have selected a beam size at the waists
varying between 2 and 5 mm in either the x or z dimension,
with a beam emittance at the mirror exit of 500 mm
mrad. ‘

- rotation angle y as given by the existing cyclotron

field, plus the field produced by the solenoid as

needed for beam confinement purposes (see Sec. 4).

Strictly speaking, the problem has six unknowns, which
define the uncoupled beam in the (x,px) and (y,py) planes
at z = 100", and six parameters which define the two waists
at the mirror exit. Knowing the total transfer matrix between
z = 100" and the mirror exit we can therefore solve the
corresponding linear system. The solution does not always
'exist, since constraints have to be made in order to define
a real‘beam. However, if the solution exists, we can calculate
the phase space area increase produced at the mirror exit.

The beam for which calculations have been carried out

is a fully stripped light ion beam with g/A = 0.5, an injection
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voltage V = 20 KV, and a central field Bo = 34.6 Kgauss.
The beam confinement is obtained with the solenoid between
z = 60" and z = 80" already described in Sec. 4 which produces
a field of 660 Gauss. The corresponding rotation angle
for such a beam is p = 31.3°.

The phase space area increase is better appreciated
if the beam emittance which must be injected at z = 100"
is presented for a fixed émittance'of 500 mm mrad in both
transverse -phase spaces at the mirror exit. This is shown
in Fig. 30, where the latter values are written at a number
of points in the X,r 2, plane, where X and z, are the waists
"halfwidth at the mirror exit. It should be remarked that
at z = 100" the phase‘space areas are always equal in the
(%,P,), (Y,py) planes. The phase spaces to be injected
are not generally waists nor are they symmetric, although
‘they are always rigorously-decéupled. As an example, the
linear phase spaces for the particular case of X, =2, = 1.5 mm
are presented in Fig. 31 in three positions, namely at
.z = 100", mirror entrance and mirror exit. The coupling
at the mirror exit is Quite evident and is responsible for
the observed phase space area increase, from 300 to 500 mm
mrad. .All data of Fig. 30 should therefore be interpreted
- in the sense explained by Fig. 31. From Fig. 30 it is ap-
parent that the solution does not always exist, and that
when it exists, phase space area increase of at least 50%
and up to a factor 3 can be expected, or in other terms,

a corresponding decrease in beam luminosity.
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€ AT MIRROR EXIT = 500 mm-mrad
Zy = Xw
0] 0] o) 0
2.5 ° ° ° -
E
£ 75 84 0 0 0
3 = ® o o @ -
N
40 206 212 18 122 0
2.0 ° ® ° ° ° —
230 271 27 265 236 190
- ) ° ® ) [ -
280 31 321 315 300
1.5 ° ° ° ° -
30 336 347 348
o L J ® o -
| ] | 2 { 1 1
| 1.5 : 2 Xw(mm) 2.5
FIG. 30. Beam emittances at z = 100 inches, which produce

‘waists with a
in either the (x,px) or (z,pz) phase spaces.

z, coordinates represent the waist halfwidths

point.

500 mm.mrad emittance at the mirror exit,

The X,

For points labelled 0 no solution exists.

and

at this latter



"SUTT PTTOs ® Aq umoys esaae 3103 9yl soonpoxd sooedsqns om3 syl

usemisq butridnop reoeds sseyd xsyzo syl yatm butidnoo o3 woI3y DbUTSTI® ®OIER BY] SOUTT Pa3IIop

pue ‘soeds sseyd ze(noriied syl o3 bHurturtezred eveie sY] ©3'OTPUT SSUTT poyseg “3TXD JIOIIATW

pue ‘sSoueIjUD JIOAITW ‘SBYOUT QT = Z 3I© UOT G°Q = v/b ay3 jo anotaeysq soeds sseyd °Te °9Id

poiM-WW GEb = 23 poIW - WW GEY = X3

1iX3 HOUHIN

POJW-WW GEb =45  posw-ums 0og = !>

AIGI=A WI/ANOG=3 SLlb=D HONMIN

ssnob 099:=9 08 -,09 QION3I0S

MOz ="A ssnoby 9pg =0g .0

(poiw) %y~ oGl (poaw)*y ~ ogI
posw-ww 29t =43 porw-ww ogg=*3 posw -ww 00g =43 = X3 .
JONVHLN3 HOMMIN .00l = Z
! T |
T i)
& ‘
] ‘ T "
A A 8 o8 |
C (wunx | ..,, ._\_ . (ww) £ (ww)x
17 .
(PDJW) >n_ *o¢ (posw)*y .ﬁOm
(poaw) A4 ~ og| (poaw) ¥y ~ 0G|

ebe-I8-XnSKW



A further optimization is possible by considering that
the injected phase space area, for a .given phase space ellipse
at the mirror exit, is a function of the rotation angle
4. The injected phase space is a periodic function of u,
with periodicity of 180° for the phase space figure and
90° for the area. This latter case corresponds to an exchange
of phase space figure between the (x,px) and the (y,py)
planes.

For the same matching conditions of Fig. 31 (Xw=zw=l.5 mm,
¢ = 500 mm mrad), the injected phase space area is presented
in Fig. 32 as a function of the rotation angle u. Note
‘ again that the solution exists only for particular values
of u, i.e. in the range of 5° to 50°. The maximum of the
injected phase space area is 330 mm mrad for u = 40° and
is rather stable for small variations of the angle u.
| From these results it follows that a control of the
rotation angle p is quite important in order to obtain an
optimized matching. To assure a variation of u of 90°
we need, in our case, an integral of the B, field of about
90 kgauss c¢m, which, fﬁr a 20" long solenoid, corresponds
to a field of about 2 Kgauss. If we assume the u variation
to be in the range of i45°' therefore adding or subtracting
the solenoid field from the given yoke field, a field of

1 kgauss will suffice.

According to these considerations we have carried out

an optimization of the angle u so as to obtain a maximum

of the injected phase space area for all cases presented
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in Fig. 30. The results are shown in Fig. 33 and they point
out that very dramatic improvements can be obtained this

way. However, sizable increases of the phase space area
between the injecticn point and the mirror exit are still
present and, as proved by the preceding arguments, cannot

be eliminated unless a different inflector is chosen. For
most cases of practical importance shown in Fig. 33, the
increase is however tolerable, given the cyclotron acceptance.

(11) is, to the best of our

The hyperboloid inflector
knowledge, the only known device which can produce a decoupled
beam, in linear coordinates, in the cyclotron with no phase
‘space area increase, provided that the rotation angle is
properly adjusted. This type of inflector requires however
a rather large space in the median plane, space which looks

right now incompatible with the design of a central region

for a superconducting cyclotron.
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MSUX-81-249

€ AT MIRROR EXIT = 500 mm-mrad

LEGEND
INJECTED AREA (mm-mrad) AT Z=100"

[/+] ROTATION ANGLE (deg)

oL 186 225 357 39
' [42] [44] [45] as]

T 138 268 344 39| 423
E - [ ® ® @ -
= [38] [43] [45] ft4s] [a6]
N 158 236 324 38 421 445

2.0 ® ° ® ® Y -

[26] [39] [44] Afa6] [46] [a6]
243 203 365 414 445 464
[24] [40] fas] [4.7] [4.7] [4‘8]
296 32 395 439 464
8] fa2] [48] [s0] [49]

34 342 414 46|
2] [42] [51] [52]

1.0 1 | 1 { N 1 1

1.0 1.5 2.0 2.5
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FIG. 33. Beam emittances at z = 100 inches which produce waists with

a 500 mm.mrad emittance in either the (x,px) or (z,pz) phase spaces at
the mirror exit. The optimized value of the rotation anglé U is in
brackets (see text for details). The X and z., coordinates represent

the waist halfwidths at the mirror exit.



Conclusions

This study shows that axial injection in superconducting
cyclotrons is indeed feasible, with injection voltages rather
similar to those encountered.in conventional cyclotrons.

An electrostatic mirror seems adequate, although different
inflectors could obviously be used. Space requirements
do however pose very definite limitations. Injection off
the magnet axis may be necessary, even though a much more
detailed study of the genter rqgion geometry will be needed
if an actual system is to be built.

The injection scheme presented here, with two deflectors
for steering the beam off the axis,hand a solenoid (or two
einzel lenses) for maiching and confinement purposes, seems
a viable option and certainly one of the simplest. Obviously,
_one may want to properly investigate some more cases of
beam matching. We believe however that the general conclusions
stated here with respect to the emittance increase will
remain valid.

We list here a few comments concerning the building

of an actual system:

- ih a superconducting cyclotron it will be advantageous
to have the injection path from the bottom, and the
mirror or whatever inflector, inserted from the top.
This choice minimizes problems associated with lifting
the upper half of the magnet, an important operation
in these machines in order to have access to the median

plane,
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The ion source will probably be far away from the cyclotron
because of physical size, stray magnetic fields, easy
access, etc.

A suitable transport line, must then be provided which
guarantees the matching at the injection point, performs
charge state analysis of the ions, etc. If this line is
too long there could be problems associated with pickup

and stripping by heavy ions in the residual vacuum. At

the low energies envisaged in this study, this could con-

8torr.

ceivably pose vacuum requirements of the order of 10~
One possible way out could be to accelerate the beam at
fairly higher energy Qp to close to the injection point,
and then decelerate it for the“final injection.

The relative emptiness of the injection path through

the yoke leaves émple space for the buncher and dia-
gnostic elements of all kinds. An interesting aspect
is how to make sure, in actual operation, that the

beam is properly aligned off the axis at the mirror.
Since as shown before, this is a four parameter problem,
a very accurate cbmputed guideline, based on precise
field measurements, both magnetic and electric, is
nécessary. Tests will have to be done, before insefting
the mirror, with special diagnostic equipment in the
median plane. The high reproducibility of the magnetic
field in superconducting cyclotrons, due to the iron

saturation, will assure, after these measurements,

that the proper injection conditions are met.
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Therefore, even though a few details should still
be worked out for building an actual system, we would like
to conclude that superconducting cyclotrons seem capable
of taking full advantage of the new ion sources being now

developed.
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Table I

08+ Bo = 34.6 Kgauss U46+ 47.5 Kgauss
Vinj (kv) p(cm) Vinj (kV) p (cm)

10 . 5855 5 .4875

15 . 7207 10 .6894

20 .8322 15 .8444

25 .9304 20 .9750

30 1.0192 25 1.0901

35 1.1009.
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Appendix A

The inflector

Calculations of the properties of a mirror for an axial
injection system have been published by Hazewindus.(lG)
Since some approximations intorduced in the equations of
motion led to errors in the predicted phase space behaviour
a complete analysis is reported here using essentially the
same notation.

A schematic view of the inflector is presented in fig. Al.
The inflector is defined by two parallel planes which make
an angle ¢ with the median plane defined by z=0. The upper
plane is actually a dgrid of wires at zero poténtial to make
the inflector as transparent as possible to the beam. The
other electrode is connected to a positive voltage; the

electric field presents only two components, E_ and E, which

y
bend the incoming positively charged beam into the median

plane.

The equations of motion

In a magnetic and electric field the equation of motion

is, with time t as independent variable
d+ > > >
m Y = q(E+vkB) (Al)

The components of a uniform magnetic field B=B, pointing
in the negative z direction, so that after inflection the

positive ion rotates anticlockwise, are given by:
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The electric field components can be derived from the inflector

geometry as

Ex =0 Ey = Esing Ez = Ecosa

where E is the total electric field and ¢ is the angle bet-
- ween the inflector plane and the z=0 plane.
The magnetic field B, defines for a beam of ions with

charge state g, rest mass m, and momentum P, the angular

velocity
o =B
m,
and the radius of curvature
%
P, 2Vo
° =58, * |um,

- where V4 is the source voltage. Introducing t as dimension-

less independent variable, defined by:
T = wt

and new dimensionless coordinates

P 1Y p
so that
R P . P . P
g -x ¢ _¥ 3 .-%
Po P, Pq

Q7



the'equationé of motion become:

X = -Y
¥ = L sing + X (a2)
~ wBp
. E
Z = —— cos
wBp cosa
The general solution can be written as:
_ 3 . : E _. . _ e
X = (Xo Yo) + Yocosr+(x°+55551na) sint aﬁs- siné-T
_ . . _ s E : . .
Y = (Y°+xo + Eo sina) (x0+a§3 sing)cost + ¥, sint (A3)
Z = Zo + Z°T+7 wBp cosa T

The inflection in the median plane

The central ray of the incoming beam at the entrance

of the inflector has the following coordinates and momenta:

The inflection in the median plane is equivalent to the

condition

at the exit of the inflector.

By e
1}
o

These constraints

to the general solution (A3) define the system

—Ro cosaT= 1 constraint 2
-1 E n
ZD = T 2 oBp cosa T Z
= =--—E—- i - " =
ZD = Ytg o 2Bo sing (l-cost )ty Z 0
inflector

38
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The system can be easily reduced to (tp = transit time in

the inflector)

1 2 2
5Tp = tg'a (l—cosTD)
and (A5)

E=wBQ 1

=1
Zp = 3 Tp COSa

D D ,

Some general conclusions can be drawn from equations AS5.

- The inflector angle a and the curvature radius p of
the beam define the geometry of the .inflector. A fixed
geometry implies a fixed p, that is a "constant orbit"
mode of operation of the cyclotron. The inflector
angle o must be 3450. Strictly speaking, a = 45° is
possible only in the absence of the magnetic field
Bo‘

- The electric field is the main parameter limiting the
‘inflector performance. Note that for fixed E any
increase in p implies an increase in the dimensions

of the inflector.

Using the relations AS the general solution (eg. A3)

becomes now

X = -tge (r-sing) + X, + (sinr)i - (l-cost) ¥
E35) . o o o
y = 899 (1-cost) + (l-cost) X, + Y, + (sint) ¥ (26)
T D ) (o] (o] 0
7 = (2 -2.) + = 1 + LT * 1
= %™ 2 D oT T 2

-
“d
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At the exit of the inflector the central ray of the
beam will have the following set of coordinates and momenta

(all expressed in dimensionless units)

Z =0 2 =0
T.-SinTt . l-cost
XD = ~-tga D T D XD= -tga - D
D D
l-cosT sint
D . D
Y. = tga Y, = tga
D Tp D Tp

Other important parameters at the exit of the inflector

are: (See fig. A2)

- %
RD = %b tga [}TD—sinrD)z + (l—coer)é]
T~-8inT
tge = l?COST .
D
$ =D )
2
tgy = 2(1-coer) - Tpsint,
TD(l-cosrn)

Maximum displacement inside the inflector

The maximum displacement of the central ray, inside

the inflector, from the grid corresponds to

dz _

gy = "tde
that 1is

z2/¥ = -tga

40 °



*31Xd

30309T3JuT ®Yl 3e pasn siszaweied ayjz Jo uOIIIUIISAA  *Z¥ °OIJ

6G¢-18-XNSN



which after substitution gives the relation
Ty + t92 sint - T
M o M D

The value of the maximum displacement d is (dimensionless

unit)
_1_2 _ 2
d = 7?; [:TM + ZTDTM 2tg (1l cosTM)] cosq

For an ion with a given starting condition at the plane

z = 2z, the corresponding time is given, to first order,

by
-sinT, tgaX _ -cost,tga¥ +Ap
T o= T+ M 0 M o p
€ M 1+ tg2acoer
D

and the corresponding displacement is

i, ; B} £ —taasi _42]
de d + [.tga(l coer)xo tga51nrMYo+rM D cosSQ .

To assure that the beam does not hit the electrode we assume
D=2d where D is the distance between electrodes, determining

together with the electric field E the inflector voltage.

Choice of the inflector parameters

a.

The study of the region sets the energy of fully stripped
ions for good centering after a few turns at a value of 10 keV/n.

For the K800 the magnetic field corresponding to the
maximum energy for fully stripped ions is 34.6 kgauss.

We obtain
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g/A = 0.5 By, = 34.6 Vo = 20 kV p = 8.32214 mm

Introducing an upper limit of 50 kV/cm for the electric
field in the inflector we obtain

2V°

E = —
pTpcOSa

< 50 kv/cm

Tp cosa > 0.96129

This relation is verified for

o = 47.5°
and it follows that:
T, = 1.43544 Ty = 0.68341 d = 1.8801 mm
Z, = 5.973 mm R, = 6.154 mm
0
Y, = 5.473 mm | 6 = 41.122
Xy = 2.813 mm y = 13.922°

E = 49.56 kV/cm D =3.75 mm v

18.58 kv

Scaling laws

The scaling law for all other ions is defined by the

condition
p = const

We obtain for the main parameters; injection voltage Vo,

electric field in the deflector E, inflector voltage VD’
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- redefinition of a new set of coordinates in the plane
z = 0 corresponding to the Yc axis pointing along the
direction of motion of the central particle (subscript
co)

- calculations of the coordinates and momenta in the
plane Yc=0 (subscript c¢) therefore defining a "virtual"

source of phase space for the cyclotron.

All the calculations will be carried out to first order

in Xo' io' of Yor Ag (all dimensionless) using the eq.

(A6). When considering the motion in the magnetic field

Y, ¥
. only terms containing tga or Tp will be dropped, since these
terms come from the electric field of the mirror.

The momentum spread Ag is introduced in the equation
through the z component of the momentum at the plane z2=2q.

Defining p=po(l+§E) to first order is
o

s P
2o = % = -(1+ 2B
pO

K
(o]

For each of the parts specified at the beginning of this
section the transit time variation At with respect to the
'central ray transit time T will be caiculated and then sub-
stitutéd in eq (A6) to obtain the final values of coordinates
and momenta.
Since we are looking for first order variations we
have to consider only the first order dependence on At and
the first order dependence of At on the starting condition,
We can subsequently expand eq (A6) to first order in

At obtaining (1t is the transit time for the centray ray)
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Vo =w By
E <« BO

VD mm~Bo

The product B is maximum on the focusing limit of the cyclo-
tron. If the maximum injection voltage along the focusing
line is of the order of 20 kV the minimum for the K800 will

be vV, = 4.1 kv (for the particle with gq/A = 0.1 B, = 35 kgauss).

Effect of the mirror on phase space

The motion of a bunch of ions through the mirror will
be considered with respect to the coordinates indicated
in the figures Al and A2. The ions start at the plane

Z = which corresponds to the entrance to the mirror for

Zp
the central ray.

The advantage of this choice is the use of the standard
notation for the phase space (defined in a plane perpendicular
to the longitudinal motion). A "virtual" phase space is
therefore defined at the plane 2 = ZD’ in the sense that
the phase space at this position is the one obtained when
the mirror is not inserted. |

‘The calculations for the passage of the ions through

the mirror are divided in the following parts:

- motion from the plane Z = 2, to the mirror entrance
" (subscript 1)
- motion through the mirror up to the mirror exit (sub-

script 2)
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% =X, X, = %,

¥, =1, X, =3,
= - . - _ - AE
2, = Zy-tga¥, Zy =2, = -(1+ p)

ii) Motion inside the mirror

Substituting the equation of motion (A7) in the equation
Sf the grid and recalling that for the central ray the tran-

sit time is e the transit time variation is given by
. Tp ™D, . Do ™D, AP
121" Tp = -(251n~§ tg -7)X° - (251n—§)Y°+(2tg—7) P

. Therefore at the mirror exit:

X, = :fiﬁ(rn-sinTD) + X +2tg 1p/2 io - éaggg;% Ag
Y2 = %ﬁg(l-cosrn) + Yo + ZsinTD/z Ag
32 = _:Da(l-coer) + io - 2sinty/2 A%
§2~= %ﬁ%SinTD + thD/Z io + Z:zzg/z Ag
i, = -tzan/z | kg - 1 5 (1 - 1 y AR
gao, tga o) tgaCOSTD/z P

iii) Rototranslation of the coordinates

We define a new coordinate system centered on the exit

point of the mirror for the central ray and with the Yc

46



X = -Egﬁr—sinr+(1—cosr)Ar] + Xo+(sinT+Arcosr)io-(l—cost+Arsinr)Yo
D

X = _tTa (l-cost+ATtsint) + (cost-Arsinr)io-(sinr+Atcosr)Yo.
D . .
- tga - s - . > . e
Y = = (l-cost+ATsint) + (1 cosr+A151nr)X°+Y°+(51nT+Atcosr)Y° (A7)
D
Y = E%ﬁ (sint+ATcost) + (sinT+A1cosr)io+(cosr-Arsinr)io

D .

Z =2+ Z(THAT) + g— (17+21A1)
o (o] TD

D3
|

&

+

We have retained the products ioAr, YOAT, ZOAT since
in some particular case the component of the momentum will

coincide with the total momentum, like éo = -(1+A§) .
i) Motion from the plane Z=2j to the mirror

The beam has to be traced back or forward (depending
on the starting condition of the single ray) in the magnetic
field only until it reaches the mirror. The grid of the

mirror is defined by the equation

Z-ZD = -Ytga

Substitution of eq (A7) gives for the transit time to first

order,

= =Y
T10 ot9C

At the mirror entrance we obtain the following values for
the coordinates and momentum
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axis pointing along the direction of motion. (See Fig. A3)

We need to translate the coordinates by the quantity

T.~Sint
XD = -tga D D
Tp
1-cosrD
YD = tda -
D

and then rotate the system by an angle ;D/2.

After the rotatranslation we obtain (Z and i are un-

changed)

Xco = coer/Z X, + 51nrD/2 Y, + 2 smtD/zxo

Y = -sint /2 X + cos 1./2Y_ - 2sinTt./2tgt X +2tgT,/2 Ap
co Dt 4 2 ‘%o D D/2% D P

[ ]
|

= 7 - —éE
Xeo costy/2 X, - tgp/2 P

=1+ 4R
co P
Zoo = %3
Zoo = Z3

iv) Phase space at the plane X, = 0

The central ray at the exit of the mirror has the

coordinates

47



*3TX® J0XITW 3aY3l 3Ie pasn walsds 23BUIPIOOD €Y °*9Id

X

*

< ap— =

A4

LCE-B-XNSW



d d
dy T 0 0 0 0 Iv
a N\opmouamu a o
1y 0 0b3iz/“iursg~ 3 -1 0 2/ 1By~ 1y
o a 263 a a a a o
2 ©b3-z/ 1800 063 - ¢/%6y- ¢/ 1637/ 1s00- g/ 1b3z/M1uts- b
o) 0673 ©H3 _ o
A m—lu... - 0 T 0 0 X
°x z/%uts 0 b3 ¢/%1s00 z/%ruts °x
* A B .
0b mow
°x 0 0 T z/%uyse- ‘G °x
2/ 1b3- : 1500
XTIJeW paeayoeg
d
m|<. T 0 0 0 0 Md.
0p< 0 N\apcﬂmmu m\npmoonamu 0 m\npcﬁm 1y
a
ow AH'NR 1500163 063 . am» 0 5
. t 1- 2/9163 - z
°x ;- 0 0673 - 0 0 °g
- /a
Z/ 1so0
o a a - d o]
X ¢/71b3 0 ¢/ 1s0d Q3500 ¢/ tuys- X
°x 0 0 ¢e/%auys z/%tse z/%1s00 °x

X1a3ey paesiogd

49



and we want to define "virtual" phase space in the cyclotron
in the plane Y, = 0. The transit time to the plane Y, = 0

is

Te = Yoo

and we obtain for the motion from the plane Z = Zy to the

plane Yc =0

Yc =0

e

A
= -l-—E
1 P

Xc = costD/Z Xo + 231nTD/2Xo + smTD/ZYo
cosT
X = -si __~D__ ¢ Ap
Xc = 51n1D/2X0 + coer/z X, + coer/ZYo + tgrD/Z 5
- - - Ap
Zc tga Yo Tp ~p
s - 9p/2 5 L1y L 1 -1y Ap
c tga o) tgae "o tgacoer/z P
Tco ~ Tp = sintD/z X, * (tga-COSTD/Z)YO - 231nTD/ 2 Y,

We can then use a matrix notation for the transformation
of the phase space from the plane Z = ZD to the plane Yc = 0.

The forward and backward matrices will be
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Appendix B

Equations of motion in an axially symmetric magnetic field

Linear equations

The equation of motion of a charged particle in a

_magnetic and electric field is:

=q (E+vxB) . (B1)

15

We perform a change of the independent variable from t to

- 2z through the relation

& (B2)

Equation (Bl) is equivalent to the following system
of first order differential equations (the dot indicates

derivative with respect to z)

pZ
vy =Py
pZ
t-n
pZ
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mE p
Py, = d [Pz By = 5, B (B3)
é = q ——--llnEz + EE B - EZ B
2 p, P, ¥ P, %

For an axially symmetric field, the vector potential and

field components in cylindrical coordinates are given by

A, =0 B, = - 9,
%4
_ =13
A =0 B, = 13 (rAg) (B4)

g
i
]

o

1.t -

£/ B dr By
o

The gcomponent of the vector potential can be expressed

as a series expansion in r as:

3
__r_ __r____ o
where B(z) = Bz(r=0,z) and the primes indicate derivatives
with respect to z.

A first order expansion for the cartesian components

of the magnetic field yields (using Egs. B4 and B5):

B, = B
B, = -% xB' (B6)
B =——-YB'



We can now linearize the system (B3) using the expressions

derived above for the fields and the first order expansion
P, = Py (B7)
where Py is the total momentum. WNote that the sign of P,

depends on the direction of motion.

The linearized equations of motion are then:

po
§ =X
po
. m_
t =p, (B8)
[ mE p
. - X —z l'
= —£ 4 + =
By = a | tpLB By
py=q mEZ-%B'x--p—}EB
mE
* ¥4
P, =4 —=
o] po

Canonical equations of motion

Consider the motion of a charged particle in a magnetic
field. A set of canonical variables in a cartesian frame

is given by:

X, ¥, 2
(B9)
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>
where P is the canonical momentum, and E the linear momentum.
In the case of an axially symmetric magnetic field,

the cartesian components of the vector potential are

= -4
A rA

14

9

X

Y 5

Using the expansion (B5) for Ae, we obtain the following
relation between canonical and linear momentum, valid to

first order:

= -1
Py = Py 2 4 By
= 1
P, =P, +3dB, (B11)
P_=p

We omit in this case the electric field; the total scalar
momentum is then conserved. The linearized equations of

motion are (B8):

P + 1 g By
L] x —
X = 2
Po
1

sy 29
Po

. o (B12)

Px =549 By



We must point out that the motion in linear or canonical
coordinates (Egs. B8, Bl2) is coupled. We can however
define a rotating cartesian frame (£ ,n), called Larmor

frame, that makes an angle p(z) with respect to (xy) given

by

S § B .
wiz) = -5/ g;dz , B13)

where z, is the location where the two frames coincide.
We recall that B is the z-component of the magnetic field
on the axis of symmetry and P, is the total scalar momentum
with sign.

The transformation between the two sets of canonical

variables is

g = cosy 0 siny 0 X
Pg = 0 cosyu 0 siny P,
n = -siny 0 cosy 0 y
P = 0 -sin 0 cos P
n H u y

The equations of motion in the new variables are now

-k

pO
. 2,2
P =-%‘.LB_€
£ P
|

pO
. 2.2
P =-lg._B.__.n
n 4 p,
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The advantage of this transformation is that it decouples

the motion in the rotating frame, simplifying the equations.

Linear vs. canonical coordinates

In the previous sections we have derived the linearized
equations of motion for a charged particle in an axially
symmetric magnetic field using linear and canonical coordinates.

The study of phase space areas requires the use of
canonical variables. The use of the Larmor frame has the
additional advantage of decoupling the motion and explicitly
allowing us to study the conservation of each phase space
area independently.

We have assumed that the motion of the central ray
is on the axis of symmetry, i.e. the z-axis, since we have
linearized the equations for the transverse coordinates.

We can, however, use a géneral curvilinear coordinate
system to describe the motion in a static magnetic field
with the arc length S of the central ray trajectory as indepen-

(17) is that linear

dent variable. The general conclusion

and canonical transverse corrdinates coincide every time

no longitudinal (in the S direction) field component exists.
Wé conclude therefore that the two sets of coordinates

and the corresponding phase space areas coincide obviously

at the injection point z = 100" (since there the magnetic

field vanishes) and at the inflector exit since there the

field is perpendicular to the trajectory.
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We are interested in the transformation between linear
and canonical coordinates in the median plane, close to
the inflector entrance. Assuming a uniform field B,

in the negative z-direction, equation (Bl1l) becomes:

P
x_Px 1y
P P 20p
(B16)
Py _ By _1x
P P 209

where p = qBop is the total linear momentum.
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