A. Quasi-Elastic Scattering, a Macroscopic Global Analysis

A global, energy-dependent, Lane-model, nucleon-nucleus optical potential has been determined by fitting (p,n)-IAS angular distributions between 25 and 45 MeV while maintaining the fit obtained by Beccatelli and Greenlee\(^1\) (BG) to proton elastic-scattering data. Differential cross sections for transitions to the isobaric analogs of the target ground states have been extracted from neutron time-of-flight spectra such as the example in Fig. 1.

In the Lane model,\(^2\) the optical potential is

\[U_0 = U_{\text{kin}} + U_{\text{nuc}} (t, T)/A, \]

where \(t \) and \(T \) are the nucleon and nucleus isospins, respectively, and \(A \) is the mass number of the nucleus. We wish to parameterize \(U \) with a linear energy dependence. As there are two characteristic energies involved in the (p,n)-IAS reaction, due to the non-zero Q-value, it is not entirely clear what energy should be used in the parameterization. As suggested by George Bertch, we choose

\[U_{\text{kin}}(r, k) = U_{\text{kin}}(r) + \frac{1}{2} U_{\text{kin}}(r) K B_{\text{kin}}(r), \]

where \(K \) is the kinetic-energy operator. To simplify the use of the potential, we replace \(K \) by an appropriate average value, giving

\[U_{\text{kin}}(E) = U_{\text{kin}}(E_{\text{kin}}(r), E_{\text{kin}}(r), t, T)/A, \]

where \(E_{\text{kin}}(r) \) for the p-target system, \(E_{\text{kin}}(n) \) for the n-analog system, \(1/2 E_{\text{kin}}(r) a^2 \) for the (p,n)-IAS form factor, and \(E_{\text{kin}}(n) \) for the n-target system.

In order to reduce the number of free parameters, we use the BG Coulomb-corrected proton potential (BGCP) to specify \(U_{\text{kin}} \) and \(U_{\text{nuc}} \). The geometry for each \(U_{\text{kin}} \) term chosen to be the same as for the corresponding \(U_{\text{nuc}} \) term. It is further assumed that \(U_{\text{kin}} \) can be specified by a real volume term plus an imaginary surface term.

Thus, there are four free parameters: the strengths of the volume and surface parts of \(U_{\text{kin}} \) and \(U_{\text{nuc}} \).

Values for these parameters have been determined by using a non-linear least-squares search program with the DWBA program DIONACK as the function subroutine. Global searches have been performed using all of our (p,n)-IAS data. As the potential is parameterized directly in terms of \(U_{\text{kin}} \) and \(U_{\text{nuc}} \), Lane-model consistency is automatically maintained; i.e., the proton and neutron potentials used to generate the distorted waves change as \(U_{\text{ion}} \) is varied. Since it is necessary to maintain the fit to the proton elastic-scattering data obtained by BG while improving the fit to our (p,n)-IAS data by adjusting \(U_{\text{kin}} \), we correct \(U_{\text{nuc}} \) for changes in \(U_{\text{kin}} \).

Our parameters generate proton elastic-scattering cross sections which are almost the same as those obtained by BG.

Figure 2 shows our (p,n)-IAS data along with the results of DWBA calculations using isovector strengths \(U_{\text{kin}}^{17.7} \) MeV, \(U_{\text{nuc}}^{18.6} \) for the real volume well and \(U_{\text{nuc}}^{18.1} \) MeV, \(U_{\text{kin}}^{0.2} \) for the imaginary surface well (solid lines). The dashed lines in Fig. 2 are obtained by using the BGCP proton parameters, the BG "Common" neutron parameters, and the (p,n) form-factor prescription of Hoffmann.\(^3\) Our fits are clearly as good as, or better than, those obtained with the BGCP parameters.

If the Lane model is valid, the potentials resulting from our searches should be able to predict neutron elastic-scattering cross sections. Figure 3 shows the predictions (solid lines).

The targets selected are all those for which there are (n,n) data from 7 to 24 MeV.\(^5\) The dashed lines in Fig. 3 are obtained with the BG "Common" neutron parameters.\(^6\) Our parameters reproduce the data as well as, if not better than, the BG parameters. While previous attempts to use (p,n)-IAS data and the Lane model to determine neutron optical parameters have been successful for single energies and for individual targets, our parameters reproduce neutron elastic-scattering data over a large range of neutron energy and target mass, even though most of the targets are different from those included in the (p,n)-IAS data used to determine the parameters.

B. (p,n)-IAS Transitions, a Macroscopic Description

The central-force part of the effective nucleon-nucleon interaction may be expressed in the form

\[V_{14} = V_{14}(r_{13}) V_{14}(r_{14}) V_{14}(r_{13}) V_{14}(r_{14}), \]

where the isospin-flip term of the effective interaction is the only central-force component which contributes to the direct amplitude for charge-exchange scattering to \(3^n \) isobaric analog states (IAS), these reactions are quite sensitive to \(V_{14} \).

The measured and theoretical angular distributions are given in Fig. 4. The principal error in absolute magnitude of the data is an estimated 10% for neutron detection efficiency calculations.\(^6\) Theoretical angular distributions in Fig. 4 have been calculated with the code DWMA, which includes the "knockon" exchange amplitude without approximations. The proton
and neutron distorted waves have been generated with BCS optical-model parameters. For 120Sn the bound states have been represented by BCS wave functions. Elementary shell-model configurations in Woods-Saxon potentials have been assumed for the other targets: ^{27}Al, ^{56}Fe, ^{208}Pb, and ^{209}Bi. 10 (f$_{5/2}$)2, 14 (p$_{3/2}$)2, and 20 (p$_{3/2}$)2 (p$_{1/2}$)2 for the excess neutrons in 90Ca, 92Zr, and 208Pb, respectively. The dashed curves result from phenomenological nucleon-nucleon forces with $V_1=12$ MeV (short dashes) and with $V_1=18$ MeV (long dashes). The solid curves have been calculated with a realistic force derived by Bertok. Both the phenomenonological and realistic forces yield angular distributions which follow the data but are generally smoother. The similarity in shape of the dashed and solid curves results from the $^{0+}$-type IAS transitions being dominated by the monopole component of V_{1g}. With the 1.0-G range Yukawa form for V_{1g}, the best overall fits to our data at proton energies of 25, 35, and 45 MeV are obtained with $V_{1g}=19/2$, 15/2, and 13/2 MeV, respectively. The C-matrix interaction produces nearly the same cross sections for these reactions as a 1.0-G Yukawa with $V_{1g}=13/2$ MeV. Thus, it accounts for the data quite well at 45 MeV and fairly well at 35 MeV. However, the experimental cross sections at 25 MeV are consistently larger than predicted.

Additional estimates of V_{1g} may be obtained from optical-model analyses of elastic and "quasi-elastic" (charge-exchanged) scattering. To first order in the effective nucleon-nucleon interaction, V_{1g} is proportional to the magnitude of the real isovector term in the optical-model potential. A macroscopic DWBA analysis of 9He-16O (p,n)-IAS data yields only about 1/3 the isospin-flip strength found in a similar study at 40 MeV. Satchler has suggested that the large energy dependence may only reflect uncertainties in the optical-model parameters available for DWBA calculations at 9 MeV. Nevertheless, using the parameters quoted by Thorlow, we have been able to fit the 9He-16O data for 27, 41, 52, and 208Pb with V_{1g} averaging 8 1/2 MeV, a decrease of only 3% from our value at 45 MeV. The apparent discrepancy between the macroscopic and microscopic analyses results from the very limited angular range of the 9He-16O data coupled with the sensitivity of the forward-angle peak to the form-factor. Thus, more extensive angular distributions are necessary for a reliable determination of V_{1g} at 9 MeV.

It has been suggested that neutron pickup followed by proton stripping may interfere with the direct amplitude. The significance of (p,d)/(n,p) contributions is currently under investigation by several groups including our own. However, we have demonstrated that straightforward DWBA calculations employing reasonable forces are capable of accounting for (p,n)-IAS angular distributions to a degree comparable with analogous (p,p') data.

C. Excited Analog States, Isovector Deformation

The (p,n) reaction to an analog state has been called quasi-elastic scattering, i.e., elastic scattering with a charge exchange. In quasi inelastic scattering the analog of an excited state of the target is produced. Just as (p,p') and (p,n) to the IAS of the target ground state determine V_{1g} and V_{1p}, the spherical isoscalar and isovector parts of the optical potential, the (p,p') and (p,n) to the excited analog state (EAS) determine V_{1g} and V_{1p}, the isoscalar and isovector deformation parameters of the potential. The analogs of 2D1 states in 20Ne and 24Mg are strongly excited at 18 MeV and require the two-step amplitudes 2D1(p,p') followed by 2D1 quasi-elastic scattering and 2D1 quasi-elastic scattering followed by 2D1(n,n'). Because the one- and two-step amplitudes had a relative phase of -90°, the calculation was unfortunately insensitive to the value of V_{1g}. In our (p,n) spectra excited analog states are either not seen or are much smaller than ground state IAS. A spectrum in which two EAS are relatively prominent is shown in Fig. 1. We have such data for targets of 90Zr and 120Sn with $E_{p}=21$, 35, and 45 MeV. With both 1D1 and 3D1 data we may be able to determine both the quadrupole and octupole deformations of the isovector part of the potential. It would be interesting to compare these with the corresponding isoscalar deformations.

D. Pre-Equilibrium Neutrons

In addition to the sharp structure of analog states in our neutron spectra there is a continuum of pre-equilibrium neutrons. When an excited compound nucleus exists, neutrons are emitted in familiar fashion from a state of statistical equilibrium, i.e., they are evaporated. Since nuclear temperatures are only -1 MeV, evaporation is negligible in producing neutrons above 5-10 MeV. Other processes, currently under study, are responsible. These processes occur in the early stages of the proton-nucleus interaction, when the incident kinetic energy has had time to be shared with only a few nucleons. It is during this period, long before equilibrium has been achieved that high-energy nucleons are emitted with relatively high probability. Spectra
resulting from bombardment with 45-MeV protons are shown in Fig. 6. Each spectrum is the angular integral of 32 differential spectra obtained at neutron emission angles from 0° to 160°. The target thicknesses are 11, 100, 86, and 272 keV for 40Ca, 60Zn, 120Sn, and 208Pb, respectively. For 25- and 35 MeV proton bombardment we have similar data. We are collaborating with Professor M. Blann of the University of Rochester in investigating the detailed pre-equilibrium mechanism by which these high-energy neutrons are produced.

REFERENCES
Fig. 1.--Comparisons of DWBA calculations with \((p,n)\)-TAS differential cross-section data. The solid curves were obtained with our parameters, the dashed curves with those of Becchetti and Greenless.

Fig. 2.--Comparisons of optical-model calculations with \((e,n)\) elastic differential cross-section data. The solid curves were obtained with our parameters, the dashed curves with those of Becchetti and Greenless.
Fig. 4.—Comparison of experimental (p,n)-IAS angular distributions with microscopic DWBA calculations based on phenomenological (dashed) and G-matrix (solid) effective nucleon-nucleon interactions. The short and long dashes correspond to V_{122} and 14 MeV, respectively.

Fig. 5.—(p,n) spectrum showing analogs of the ground state of 120Sn and of its collective 2^+ and 3^- excited states.

Fig. 6.—Angle-integrated cross sections for neutron production vs. neutron energy.
From the time that the quadrupole moment of the deuteron was measured, it has been known that a component of the nuclear interaction is the tensor force, but it has been difficult to obtain an accurate and consistent picture of its importance. In 1957 it was shown by Visscher and Ferrell that the tensor force was essential for an explanation of the anomalously long beta-decay lifetime of ^{14}C. Although a super-allowed pure Gamow-Teller ($0^+\rightarrow 1^+$) transition, the lifetime is four orders of magnitude greater than simple ($p_{1/2}$)2 wave functions would predict. By constructing wave functions of both $p_{1/2}$ and $p_{3/2}$ orbitals and including a tensor two-nucleon interaction Visscher and Ferrell were able to explain the inhibition via cancellation of terms in the beta-decay matrix element. No mixture of purely central forces is capable of giving the required cancellation. Hence the long lifetime of ^{14}C is a boon not only to archaeology, but also to nuclear physics.

The $^{14}\text{C}(p,n)$ reaction to the ground state of ^{14}N negotiates a transition between the same nuclear states as in ^{14}C beta decay. The ordinarily-dominant $L=0$ contribution to this charge-exchange reaction is very nearly proportional to the allowed beta-decay matrix element, which is fortuitously suppressed. The tensor interaction, which is spin dependent and mixes an $L=0$ transfer to the nucleon with an $L=2$ transfer to the nucleus, may predominate over, or at least be comparable to, the central forces. A detailed experimental and theoretical study of this reaction has been made at energies up to 18 MeV. Inconsistent results, however, were obtained between differential cross sections, which clearly favored inclusion of a tensor force, and neutron polarization measurements, which did not. Deficiencies in this work are: (1) neglect of knock-on exchange amplitude, (2) neglect of compound-nucleus effects, and (3) inability to fit the $0^+\rightarrow 0^+$ (2.31 MeV) IAS transition, presumably because of difficulties with the optical model; these difficulties are also present in analysis of the ground-state transition in which the tensor force is present.

We are in the midst of calculating and measuring $^{14}\text{C}(p,n)$ cross sections between 25 and 45 MeV. Our computer program, DWBA-70, includes knock-on exchange. In the 25-45 MeV range compound nucleus effects should be quite negligible and the DWBA should be very applicable. With all these advantages that come with higher energy also come the experimental difficulties of smaller cross sections and faster neutrons to resolve. By developing an epoxy bonding scheme we have produced a target with 3.5 mg/cm^2 of ^{14}C to counteract the low cross sections; short cyclotron bursts and a good detector have enabled us to achieve sufficient energy resolution. Some data have been taken at 25, 35, and 45 MeV. A typical spectrum at 25 MeV, $\theta_m=60^\circ$, is shown in Figure 1. Transitions to the three lowest states of ^{14}N are of interest. The IAS transition to the 2.31 MeV state is governed mostly by the distorted waves and by V_T, the isospin-flipping part of the central force. Transitions to the 1^+, $T=0$ states at 0 and 3.95 MeV are governed by the same (almost) distorted waves; by $V_{1\pi}$, the spin- and isospin-flipping part of the central force; and by the tensor force.

REFERENCES

![Figure 1: Neutron time-of-flight spectrum for $^{14}\text{C}(p,n)^{14}\text{N}$; $E_p=25\text{ MeV}, \theta_m=60^\circ$.](image)