SECTION IV

ABSTRACTS OF PAPERS IN PRESS

(after June 30, 1974)
Study of the (p, 3He) and (p,t) Reactions on 29Si

H. Nunn, W. Beeson, W.A. Lanford and B.H. Wildenthal
Cyclotron Laboratory, Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Differential cross sections of the 29Si(p, 3He)27Al and 29Si(p,p1H)29Si reactions between 8 and 50 MeV bombarding energy were measured at 40.1 MeV bombarding energy. Assignments of the L-shell transfer transitions based on the basis of comparisons to DWBA calculations yield several new spin and parity assignments for states in 29Si. The experimental differential cross sections of the transitions to several of the low-lying mirror pairs of states in 27Al and 29Si are compared to the results of microscopic DWBA calculations in order to study the spin-isospin dependence of the interaction potential in the two-nucleon transfer reaction and to test current shell-model wave functions for the nuclear states involved.

NUCLEAR REACTIONS: 29Si(p, 3He)27Al, 29Si(p,p1H)29Si

$E_{p} = 40.1$ MeV; Measured Q-values, ENDF-IV normalization factors for states of 27Al and 29Si.

*Supported in part by the U.S. National Science Foundation.

+On leave of absence from Institut für Kernphysik der J.W. Goethe Universität, Frankfurt/M, Germany.

†Now at Yale University, New Haven, Connecticut.

\section*{Fast Calibration of Large Si(Li) Electron Detectors From Si(Li) to 40 keV Using Double-Escape Peaks and Compton Edges from 60Co}

A. S. Firestone, R.A. Wauters, and W. C. McKennis
Department of Chemistry, Cyclotron Laboratory, and Department of Physics

and

W. B. Emily
Cyclotron Laboratory and Department of Physics
Michigan State University
East Lansing, Michigan 48824

Abstract:

Double-escape peaks and Compton edges from the γ-ray of 60Co have been used to allow fast, precise calibration of Si(Li) electron detectors. They allow a direct calibration up to 40 keV, and the calibration curve is linear enough that it can probably be extrapolated safely to even higher energies.

\section*{A.F. Sloan Fellow, 1972-1974}

+Work supported in part by the U.S. Atomic Energy Commission

\section*{Decay of 177Ta to Levels in 177Hf}

B. D. Jelenska and F. W. Berenthal
Departments of Chemistry and Physics and Cyclotron Laboratory
Michigan State University, East Lansing, Michigan 48824

Abstract:

The locations of 15 energy levels have been deduced from γ-ray singles and double-electron measurements on the EC-γ decay of 177Ta to 177Hf. Four energy levels and fourteen γ-rays associated with 177Ta decay were unknown in the previous EC(γ) work. The $\log f$ values have been assigned to 177Ta γ-ray decay, and multipolarities of several transitions have been determined with use of earlier conversion electron data.

†NSF Undergraduate Research Participant, Summer 1972; this work was conducted in partial fulfillment of the requirements for the B.S. degree in Chemical Physics at Michigan State University.

‡Supported in part by the U.S. Atomic Energy Commission.

†Supported in part by the National Science Foundation.
Study of the 32Si(12C,p)32P Reaction
H. Hartn** U. Tiedeland, R. Hubert* and W. Patzner*
Institut für Kernphysik der Universität Frankfurt, Germany
and
B. H. Wildenthal
Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The 32Si(12C,p)32P reaction was studied at an incident energy of 28 MeV, and angular distributions were measured for states in 32P up to 3.00 MeV of excitation energy. Comparison of the experimental differential cross sections with two-nucleon transfer distorted-wave Born approximation (DWBA) calculations was made to test different sets of wave functions, which were calculated in the same configuration space but with different treatments of the effective residual interaction.

| NUCLEAR REACTION: 32Si(12C,p)32P, E=28 MeV, measured |
| enriched target, DWBA-analysis.

* Present address: Cyclotron Laboratory, Michigan State University, East Lansing, Mich. 48824.
** Present address: Kraftwerk Union, Offenbach, Germany.
* Research supported in part by the Bundesministerium für Forschung und Technologie of the Federal Republic of Germany.
* Research supported in part by the U.S. National Science Foundation.

A Study of the Nuclear Structure of 36Cl with the (p,d) Reaction

J.A. Rice and B.H. Wildenthal
Cyclotron Laboratory, Department of Physics
Michigan State University, East Lansing, Michigan 48824

and

B.H. Freed
Physics Department, University of South Carolina
Columbia, South Carolina 29208

NUCLEAR REACTIONS: 36Cl(p,d)35Cl, E=35 MeV; measured E(36Cl); deduced excitation energies, Jh-values and spectroscopic factors for states of 36Cl.

The 37Cl(p,d)36Cl reaction, at E=35 MeV, was employed to study properties of the levels of 36Cl. Excitation energies of levels up to 8.2 MeV were obtained by high-resolution magnetic analysis of the emitted deuterons. Angular distributions for the states observed in this work were measured over the angular range $\theta=3^\circ$ to 55°. These data were analyzed with the DWBA theory to obtain values of J_h and $C^2_{J_h}$. The results are compared to the previously extent experimental picture for this nucleus and to predictions of current nuclear structure theory.

* Research supported in part by the U.S. National Science Foundation.
** Supported in part by the Research Corporation.
A High Resolution Study of 208Pb with 35 MeV Protons

W.T. Wagner, G.M. Crowdy, C.R. Hammersmit, and R. Holman

Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Angular distributions of states in 208Pb excited by 35 MeV protons have been measured with a resolution of 1-8 keV. Collective model calculations enabled the Δ-transfers of many states to be identified. The possibility of excitation of 1^+ states is discussed. Microscopic model calculations were made with both phenomenological and theoretical information. The large number of observed unnatural parity states permitted the role of non-central forces in these transitions to be investigated.

*Supported in part by the National Science Foundation.

A High Resolution Study of 40Ca Via Inelastic Proton Scattering at 35 MeV

J.A. Kolen, Jr. and R.J. Geltman

Physics Department and Cyclotron Laboratory
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Spectra of inelastic proton scattering on 40Ca have been obtained with 4.5 keV resolution at a bombarding energy of 35 MeV. Cross sections for the excitation of several previously unresolved particle-hole states have been measured. Nearly all known energy levels plus nine new levels have been observed up to an excitation energy of 9.3 MeV, slightly above the proton separation energy, and accurate excitation energies have been determined for these states.

NUCLEAR REACTIONS: 40Ca(p,d)39K; E=25.2 MeV; measured ω_0, Γ_0, and spectroscopic factors; $L-E$ curve

9Research supported in part by the National Science Foundation.
Study of 176Hg Levels Populated in the Decay of 177Ta

I. Kozuma, I. M. Laubheimer-Mallis
T. Tanoue and W. F. Jones
Heavy Ion Accelerator Laboratory, Yale University
New Haven, Connecticut 06520

and

F. H. Berthel
Department of Chemistry and Cyclotron Laboratory, Department of Physics
Michigan State University
East Lansing, Michigan 48824

and

Heavy Ion Accelerator Laboratory, Yale University

Abstract

The decay of 177Ta was studied using high resolution Ge(Li), Si(Li) and Si surface barrier detectors in singles and coincidence modes. The 177Ta activity was produced via the reaction 176Hg (^{12}C, 4n)177Ta, at a carbon beam energy of 6.2-6.9 MeV per nucleon. All levels were obtained from chemically separated Ta sources. In the previously known energy levels of 177Hg, the following levels in keV were determined: 215.5, 451.8, 508.9, 635.8, 775.5, 795.3, 812.7, 827.5, 945.2, 1010.0, 1121.6, 1127.0, 1392.8, 1398.3, 1540.0, 1574.3, 1595.6, 1667.1, 1684.3, 2263.3. Rotational bands based in the 1/2$^+$[521] (0.8-1), 5/2$^+$[521] (107.2 keV), and 7/2$^+$[533] (137.3 keV) Nilsson states were observed. From measurement of the 0 spin-projection energy, the mass difference between 177Ta and 177Hg was determined to be 3670±350 keV.

aSupported by the U.S. Atomic Energy Commission.
bSupported by the U.S. Atomic Energy Commission.
cSupported by the National Science Foundation.
dOn leave of absence from Japan Atomic Energy Institute, Tokai-mura, Chiba-ken, Japan.

States in 181Hg Populated by the Decay of 181Pm

P. T. Yang, R. E. Todd, and W. B. Kelly
Cyclotron Laboratory and Department of Physics
Michigan State University
East Lansing, Michigan 48824

and

W. O. McKeiver and R. A. Warner
Department of Chemistry and Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824

Abstract

The decay of 20.20-min 181Pm has been studied with Ge(Li) and Hg(Tl) y-ray detectors in a variety of singles and coincidence configurations, including Ge(Li)-Ge(Li) two-parameter "nongeometric" coincidence experiments, anticoincidence experiments, and pair (0-y) experiments to determine the relative 0 y-ray feedings. Fifty y rays were identified from this decay, and 46 of these (0-y of the y intensity) were placed in a decay scheme containing 25 levels in 181Hg. 0 assignments or limits were made for all of the states. The structures of the lower-lying states in 181Hg are discussed in terms of the shell model, and possible structures are also suggested for many of the higher-lying states. We compare our results with those of previous studies and also with particle-transfer experiments.

aU.S. National Science Foundation Summer Research Participant. Permanent address: Physics Department, Wilson College, Shandaken, Pa. 12780.
bPresent address: Department of Physics, Western Michigan University, Kalamazoo, Michigan 49001.
cWork supported in part by the U.S. National Science Foundation.
eWork supported in part by the U.S. Atomic Energy Commission.
A Study of the Nuclear Continuum in 15O
by Inelastic 3He Scattering

A. Neuland, W. Benenson and G. M. Crowly
Cyclotron Laboratory, and Physics Department
Michigan State University, East Lansing, MI 48824

ABSTRACT

Inelastic scattering of 15O 3He particles from 15O shows an enhancement and structure of the continuum consistent with the assumption of a giant quadrupole resonance. Completely microscopic model calculations indicate that the excitation of $1^{-}(T=1)$ and $5^{-}(T=3)$ states may account for only ~10% of the total cross sections of the excitation region 17-27 MeV.

NUCLEAR REACTION 16O(3He,3He)1H, $E_x=25-35$ MeV $E_x=72$ MeV, measured $E^2(E_x)$, deduced $E2$ strength.

Supported by the National Science Foundation.

A Microscopic Description of IAS Transitions Induced by 3He, 4He, and 4He Protons

E.R. Boring, D.M. Patterson, and Aaron Galonsky
Cyclotron Laboratory, Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Differential cross sections have been measured for (p,n) reactions to the isobaric analogues of the targets 15O, 20F, 23Na, 27Mg, and 28Si at proton bombarding energies of 25, 35, and 45 MeV. The isospin-flip strength of a phenomenological nuclear-nucleus force has been determined with microscopic INRA calculations including the "penultimate" exchange amplitude. At the higher proton energies a realistic G-matrix effective interaction also provided a reasonable account of the observed angular distributions.

Supported by the National Science Foundation and the Office of Naval Research.
BASIC ORBIT PROPERTIES OF IONS IN A SIGMA FUSION DEVICE*

H. M. Gordon and D. A. Johnson

Cyclotron Laboratory, Physics Department
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The "Sigma Cell" designed by Naglich is aimed at producing useful fusion power by storing deuterons in processing, self-colliding orbits in a suitable magnetic field. We have undertaken a more thorough analysis of the basic orbit properties in such a device. Using equilibrium orbit transfer matrix techniques, we have developed a computer code which calculates all the important properties of median plane orbits and of vertical focusing in the given magnetic field as a function of momentum. Our results show that inherent alternating-gradient effects increase the vertical focusing, but beyond a critical momentum value, the vertical oscillations become unstable because of over-focusing. Moreover, the longer precession periods required for successful beam injection are generally correlated with weaker vertical focusing, and hence, lower space charge limits. In terms of orbit dynamics, our results also suggest that the particular magnet parameters chosen by Naglich may not be suitable.

*Work supported by the National Science Foundation.

AN ULTRA-HIGH-WIDEN GAS CELL*

Helmut Lauerer, Cary N. Davidm, *
San H. Austin and Lai H. Pangbeeb

Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

A gas cell has been developed for which the total areal density encountered by outgoing reaction products can be as low as 50 µg/cm² at 25 Torr gas pressure.

*Work supported by the National Science Foundation.

Cross Sections for the Production of Mass 6 and Mass 7 Nuclides in the Proton-Induced Spallation of 79Br1

Loko M. Pangbeeb, * San H. Austin, and Helmut Lauerer

Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Cross sections for proton induced spallation of 79Br leading to nuclides with mass 6 or mass 7 were measured at proton energies between 30 and 40 MeV. Time-of-flight techniques were used for mass identification.

NUCLEAR REACTIONS: 79Br(p, 2n) 68Ge, E=30.0, 35.0, 40.0 MeV; measured spallation cross sections for producing masses 6, 7 as targets. Discuss astrophysical significance.

First Excited A=9 Isospin Quartet*

W. Benson and I. Kashy

Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The first excited state of 9C and its analog in 9B have been observed, and their mass excess and widths have been measured. This completes a new mass quartet which differs from the predictions of the isobaric multiple mass equation less significantly than the ground state A=9 quartet.

NUCLEAR REACTIONS: 12C(30, 40, 50 MeV, E=7 MeV) measured Ex of 7C first excited state; 12C(p, 2p, 3p, 4p) 7B, measured Ex of second 7/2+ level in 7B. Deduced coefficient of multiplet mass equation for first excited A=9 quartet.

*Work supported by the National Science Foundation.
DECAYS OF THE $\gamma _{\beta ^{+}}$ ISOTOPES, 57Fe AND 59Fe

J. N. Black and W. C. McKeirra
Department of Chemistry
Cyclotron Laboratory, and Department of Physics

and

W. H. Radzi and B. E. Wilkenschafi
Cyclotron Laboratory and Department of Physics

Michigan State University
East Lansing, Michigan 48824

The decays of 8.5-min 57Fe and 2.5-min 59Fe have been studied with a variety of γ and $\beta ^{+}$ detectors in many different singles and coincidence configurations. States in 57Fe populated by 57Fe decay were found to lie at $0 \left(\frac{1}{2}^{+} \right)$, $377.3 \left(\frac{1}{2}^{+} \right)$, $1288.0 \left(\frac{3}{2}^{+} \right)$, $1619.3 \left(\frac{3}{2}^{+} \right)$, $2273.5 \left(\frac{3}{2}^{+} \right)$, $2365.5 \left(\frac{1}{2}^{+} \right)$, $2404.6 \left(\frac{3}{2}^{+} \right)$, $3326.7 \left(\frac{1}{2}^{+} \right)$, $772.7 \left(\frac{1}{2}^{+} \right)$, and 3246.0 keV \left(\frac{1}{2}^{+} \right). States in 59Fe populated by 57Fe decay were found at $0 \left(\frac{1}{2}^{+} \right)$, $3228.1 \left(\frac{1}{2}^{+} \right)$, and 2139.0 keV \left(\frac{1}{2}^{+} \right). In addition, a 1050.8-keV γ and a 1715.5-keV γ transition were found to compete with the 701.1-keV γ Isomer transition in decaying 57Fe, this being the first observation of such high multipolarities. The 0^{+} has an intensity of 5.04\times10$^{-3}$ and the 3^{+} an intensity of 1.5\times10$^{-4}$ relative to the 2$^{+}$ transition. The 2^{+}, 4^{+}, and 6^{+} transitions are observed with respective factors of 7.6, 4.1, and 4.3 with respect to single-particle estimations and by somewhat larger factors with respect to single shell-model estimates.

E. G. Blasser and D. A. Johnson
Cyclotron Laboratory and Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Superconducting main cells combined with conventional sooted iron pole tips constitute a promising design configuration for a new generation of compact, low-cost heavy-ion cyclotrons. This paper gives results of focusing strength calculations for cyclotrons for a variety of possible pole tips. The focusing is found to be highly sensitive to the average strength of the magnetic field, moderately sensitive to the magnetic gap in the hills, and relatively independent of the number of sectors, the relative width of hill and valley and the magnetic gap in the valleys. Spreading of the iron pole tips increases the focusing but substantially less than expected. Several properties are strikingly different from the corresponding properties of conventional low field magnets. The focusing limit of high field magnets leads to a linear dependence of the energy per nucleon on the charge to mass ratio of the ion over much of the operating range which contrasts with the usual quadratic dependence.

Techniques for the Study of Short-Lived Molecules

Donald D. Macdonald
Department of Chemistry and Cyclotron Institute
Texas A. and M. University
College Station, Texas 77845

and

W. C. McKeirra
Department of Chemistry, Cyclotron Laboratory, and Department of Physics
Michigan State University
East Lansing, Michigan 48824

FOCUSING PROPERTIES OF SUPERCONDUCTING CYCLOTRON MAGNETS

H. G. Blasser and D. A. Johnson
Cyclotron Laboratory and Physics Department
Michigan State University, East Lansing, Michigan 48824

(Received 16 December 1975; in final form 26 January 1976)
A Note on Discrepancies between (p,n) and (p,dp) Reactions on Nuclei near A = 708

G.M. Crowly, P.S. Miller, R. Boering, Aaron Galonsky
and D. Patterson
Cyclotron Laboratory and Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The (p,n) and (p,dp) reactions on nuclei near A = 708 were compared. No discrepancy in cross sections were observed but the width anomaly remains.

[NUCLEAR REACTIONS: 708Pd(p,n) and 708Pd(p,dp), E_p = 21-35 MeV, measured

"Virtually supported by the National Science Foundation and the Office of Naval Research.

Hexadecapole Deformations in V and Os Nuclei from Perturbed Rotational Band Structure

P. N. Beresin, R. B. Jelley, T. L. Kne, and R. A. Varner
Departments of Chemistry and Physics and Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824.

ABSTRACT

The spectroscopic data for even-parity rotational and intrinsic states in 185V and 187Os are shown to be incompatible with very large static nuclear hexadecapole deformations (e~0.2) implied by conventional analysis of recent Coulomb excitation measurements of 24 transition moments in 184Os and 186,188Os.

Rotational Band Structure in 176Dy and 177Dy Isotones:

I. Evidence for the Transition to \(1\hbar\text{g}\)

Coupling at High Spins in 176Dy.

P. N. Berthol and R. A. Varner
Departments of Chemistry and Physics and Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The 177Dy(p,2p) and 177Dy(p,3p) reactions have been employed in a study of the 176Dy rotational band structure. Attention is focused on the unique-parity 9/2\(\text{^+}\) band and its high-energy rotational structure. The higher spin members of the even-parity band in 176Dy are not well-characterized by a single E quantum-number and are better represented by the [9/2\(\text{^+}\)] coupling scheme. Limits are placed on the rotational deformation consistent with the rotational band structure in 176Dy. The relevance of the even-parity band structure in 176Dy to backbending in neighboring even-A nuclei is discussed.

J-Dependence Observed in \(61,626\text{~g}(p,d)\) Reactions at 40 MeV

D.H. Kong-A-Siu* and W.S. Chien
Cyclotron Laboratory and Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

Several \(4\hbar\) transitions observed in both 61,626\text{~g}(p,d) reactions demonstrate a very stable \(J\)-dependence of shape over a range of intensities and excitation energy.

*Supported in part by the National Science Foundation.

*Supported by C.N.R.S. (France), on leave from the Institut des Sciences Nucleaires, Grenoble, France.
Failure of the Allowed Assumption in the ϵ/β^* Decays of ^{145}Gd and ^{143}Sm—Experimental Evidence for Interference Effects in Nuclear β Decay

R. B. Firestone, R. A. Warner, and Wm. C. McHarris
Department of Chemistry, Cyclotron Laboratory, and Department of Physics, Michigan State University, East Lansing, Michigan 48823

and

W. H. Kelly
Cyclotron Laboratory and Department of Physics, Michigan State University, East Lansing, Michigan 48824
(Received 8 April 1974)

Anomalous ϵ/β^* decay branching ratios for "hindered allowed" transitions (measured by γ^*/γ and x-ray coincidence techniques) have been found in $^{146}\text{Gd} \rightarrow ^{146}\text{Eu}$ (668.5 keV state) and $^{147}\text{Sm} \rightarrow ^{147}\text{Pm}$ (1173.2 keV state). These ratios exceed theoretical predictions by factors of 24 and 5, respectively. Thirteen additional ratios from these nuclei and ^{147}Eu agree with the predictions. This is the first conclusive evidence of the failure of the allowed assumption in nuclear β decay and of the presence of interference effects.

Classical view of the application of sum rules to inelastic form factors

G. F. Bertsch
Department of Physics and Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824
(Received 15 April 1974)

Classical arguments are given to show why the Talmi model of form factors can be derived from a doorway hypothesis.

Discovery of the Missing Two-Particle, Two-Hole 0$^+$ States in ^{40}Ca

Kamal K. Seth and A. Saha
Northwestern University, Evanston, Illinois 60201

and

W. Benenson, W. A. Lanford, H. Nann,† and B. H. Wildenthal
Michigan State University, East Lansing, Michigan 48823
(Received 26 March 1974)

A good-resolution study of the reaction $^{40}\text{Ca}(p,\alpha)^{40}\text{Ca}$ has revealed the existence of three new 0$^+$ states in ^{40}Ca at 7096, 9284, and 8438 keV excitation. Arguments are presented to show that these states are indeed the long sought-after 0$^+$, $T=0$ states with predominantly two-particle, two-hole configurations.
Study of the Structure of 62Zn and 64Zn Through (p, t) Reactions at 35 MeV

R. A. Hinrichs
Department of Physics, State University of New York,
College at Oswego, Oswego, N. Y. 13126

and
Cyclotron Laboratory, Michigan State University,
E. Lansing, Michigan 48824

and
D. M. Patterson
Cyclotron Laboratory, Michigan State University,
E. Lansing, Michigan 48824

ABSTRACT

Energy levels in 62Zn and 64Zn have been investigated via the (p, t) reaction at 35 MeV. Many new levels are reported up to an excitation energy of 5.3 MeV, with spin and parity assignments determined for most levels, including the 0° member of the two phonon triplet at 2.33 MeV. A comparison between the states populated in these two reactions is made. Standard distorted-wave calculations give reasonable agreement with the data. However, 3° and 4° states cannot be unambiguously distinguished.

NUCLEAR REACTIONS 62Zn (p, t) 64Zn, $E = 35$ MeV.
62Zn (p, t) 64Zn, $E = 33$ MeV; measured $\sigma^2 (l = 0, 0)$.
64Zn, α decay, levels: $3°, 4°$.

*Work supported in part by the National Science Foundation.

Two-body short-range correlations and Coulomb matrix elements*

G. F. Bertuch and S. Shlomo
Cyclotron Laboratory, Department of Physics, Michigan State University, East Lansing, Michigan 48824
(Received 6 May 1974)

Correlated Coulomb matrix elements are calculated by evaluating the appropriate G matrices G_{nu} and G_{uc} which correspond to $V_u + V_c$ (nuclear + Coulomb) and V_u, potentials, respectively. Including the effect of the Pauli operator, we confirm the recent report by McCarthy and Walker that the effect of the two-body short-range correlations is small.

162
Levels of 56Ni

H. Nann* and W. Benenson
Cyclotron Laboratory and Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The 58Ni($p,p^{'}$)56Ni reaction was studied at 40 and 45 MeV beam energy. An energy resolution of 10-25 keV permitted observation of 68 levels with excitation energy up to 10.5 MeV. Spin and parity are assigned to levels which were excited with characteristic angular distributions. These include 0 states at 3.85, 5.00, 6.44, 7.01, 9.02, 9.99 and 10.02 MeV.

NUCLEAR REACTIONS: 58Ni($p,p^{'}$)56Ni, $E_{p}=40.0$ and 45.5 MeV;
measured o(E_{p},0); enriched target. 58Ni deduced levels.

Work supported by the National Science Foundation.

Work supported in part by the National Science Foundation.

High Resolution ($p,p^{'}$) on 207Pb and 209Bi

W.T. Wagner, G.M. Crawley and G.R. Hammerstein
Cyclotron Laboratory and Department of Physics
Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The inelastic scattering of protons from 207Pb and 209Bi has been measured with energy resolution on the order of 1/5000. Many states were observed and a number of weak coupling multiplets were identified. Use of the collective model and weak coupling theory enabled spin and parity assignments to be made. Calculations for the observed single particle states with non-central forces and with core polarization are presented.

NUCLEAR REACTIONS. 207Pb($p,p^{'}$), 209Bi($p,p^{'}$), $E=35$ MeV;
measured o(E_{p},0); $\theta=10-100^\circ$. Deduced L, S, L subscripts macroscopic
RPA analysis.

*Work supported in part by the National Science Foundation.