Optimum E2 Effective Charges for the 65/2-51/2—d3/2 Model from a Survey
of Experimental Electric Quadrupole Transition Strengths
B.H. Wildenthal and B.A. Brown

We have compiled a computer-stored data base
of 300-plus experimentally determined electric
quadrupole transition strengths for nuclei of
8 <N, 2 < 20.
is the published compilation of Endt,1 augmented
by items taken from Endt and van der Leun2
by entries from the current literature. We are
utilizing this data base, together with corre-

The foundation of the collection

and

sponding shell-model transition densities calcu-

lated from the Chung-Wildenthal wave functions,3

to determine the empirically optimum values of

the E2 effective charge for the "dsd"™ shell model.
Preliminary ;utveys of this sort with much

smaller data bases3’4

charges of e

have suggested effective.
= 1.35 ¢, e = 0.35 e.
study employs a somewhat different assumption

The present

about the sizes of the radial wave functions than
did the first surveys. Rather than attempt to
parameterize nuclear sizes with some A-dependent
formula we have decided5 to utilize the newly
available precise rms values for the radii of
stable ground states which are available from
new electron scattering analyses and from new
muonic atom data. We assume that the radial wave
functions for the sd~shell nucleons have the har-
monic oscillator functional form and adjust the
oscillator parameter for a given A value to repro-
duce the experimental rms radius for the stable
ground state of that A. This assumption, tog-
ether with values for the one-body transition
densities (obtained from the Chung-Wildenthal

wave functions) and the effective nucleon charges
(assumed A-independent) suffice to yield predic-
tiohs for any sd-shell E2 transition.

We carry out least-squares fits of the theore-
tical E2 matrix elements to their presumed experi-
mental counterparts in which the effective nucleon
charges are treated as the parameters.
cal elements of such fits are:

The criti-.

1. data set choices

2. treatment of experimental errors

3. degrees of freedom
The choice of data set involves several different
considerations. It is possible that there are
A-dependent effects in the model-experiment rela-
tionships which would manifest themselves as aif-"~
ferent effective charges for different mass regions.
This question can be simply answered by testing
subsets of the data independently, A = 17-28 and
A = 29-39, etc.
the data set is whether all data have model counter-
parts. We exclude the few data, principally for
A = 18 and 38, which involve obvious intruder states,

laO, 0;, etc.

e.g.,
transitions as 184 2; +~OI in question.

A more subtle question about

This still leaves such
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These states are basically in the model spage,
but perhaps the E2 matrix elements are‘sign}Ei- C
cantly contaminated by intruder components. We
ultimately have to evaluate the impact of such
data on the results and make an informed but arbi-
trary decision on what to include. Still another
igsue in constructing the data base involveé the
model for the radial wave functions. For wéll-
bound states, the harmonic oscillator assumption
should be adequate. However for states in which
the last proton is loosely bound, the H-O model
raises obvious questions. Again we address the
issue by alternate inclusion and exclusion of
the relevant items from the data base.

The treatment of experimental errors is less
than straightforw&rd because our model itself
has intrinsic limitations which preclude a mean-
ingful accuracy in prediction beyond limits which
are imprecise but nonetheless certainly exceeded
by a few extremely accurate To
use the guoted experimental uncertainties without
modification would bias the

measurements.

results very strongly
towards fitting a very few,
data. We deal with this by
tainty of each datum a so-called "theoretical
uncertainty”.

otherwise arbitrary,
adding to the uncer-

One choice for this "dampening
term" is a value which produces a chi-square of
1.0, that is,
equal to the rms experimental-theoretical devia-
tion. This value is approximately 2 efmz. aAs

a compromise between this and no dampening,

we also test the effects of a value 0.2 efm”,

the choice of a "theoretical error”

which is still roughly ten times larger than the
smallest experimental uncertainties.

The most restrictive parameterization with
which the fit can be made is that of the conven-
tional effective charge model. In this assumption,
0 and
T = 1 (or the proton and neutron) single particle
matrix elements are fixed and only their overall
magnitudes are varied, thereby determining the
isoscalar and isovector effective charges. The
restrictions of this parameterization can be suc-
cessively reduced to the limit in which

the relative values of the individuals T =

each single
particle matrix element of the space is treated

The determination .of the
number of meaningful degrees of freedom in this
problem is one of the goals of our survey.

Our first results show that the previously
suggested values of e = 1,35, e, = 0.35 are remark-
ably close to the best fits obtained from the
The
type of agreement obtained between theory and
experiment is shown in PFig. 1.

as a free parameter.

new data base in a wide variety of fits.
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Fig. 1. Comparison of theoretical and measured
matrix elements of electric quadrupole transitions.
The entry for each transition is positioned such
that its "x" coordinate is its theoretical value
and its "y" coordinate its measured value. Perfect
agreement would then correspond to a series of
points all falling on the 45 diagonal. The data
shown comprise those measured transitions in
A = 17-28 which have assigned experimental uncer-
tainties of less than 5%.
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Gamow-Teller Beta-Decay in the sd shell:

A Survey of Experimental Results and the

Predictions of the Chung-Wildenthal Wave Functions
B.A. Brown and B.H. Wildenthal ’

We have compiled the existing experimental
data on allowed beta decay in the region A = 17-39
and from them extracted the matrix elements for
Gamow-Teller decay. For all of these cases, as
well as for decays as yet experimentally unmea-
sured, we have calculated from the Chung-Wildenthal
wave functions (Ref. 1) for parent and daughter
states the transition density matrix elements
for AT = 1, AT = 1.

Theoretical Gamow-Teller matrix elements
have been calculated from these transition densities
using both the free-nucleon values for the single-
particle matrix elements and the empirical values
obtained in a preliminary version of this work,
Ref. 2.
a redetermination of the empirically optimum single

The completion of this survey will involve

particle matrix elements from fits to the complete
data base. Inspection of the results at this
stage do not suggest that the values of Ref. 2
will be changed significantly. A comparison of
2 to the data from

the region A = 32-39 are shown in Fig. 1.

the predictions based on Ref.

1. W. Chung, Thesis, Michigan State University,
1976. '

2. B.A. Brown, W. Chung and B.H. Wildenthal,
Phys. Rev. Lett. 40, 1631 (1978).
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Fig. 1. Comparison between experiment and theory

for the totality of Gamow-Teller beta decay matrix
elements in the region A = 32-29. The theoretical
values are based on the empirically renormalized
single particle matrix elements.



Effects of Configuration Mixing Upon the Total Strength of E-Iiké Excitation
B.H. Wildenthal and B.A., Brown

There is at present considerable activity
directed towards determining if the action of
the spin operator 3 is quenched in the nucleus.
Measurements of this quenching are derived from
comparisons of the reduced strengths of nuclear
transitions believed to be mediated by 3 to pre-
dictions for these transitions based on models
of the nuclear states involved. to. be
precise, we should speak of the qqenching of §

Hence,
relative to some assumed family of nuclear wave
functions.

that models
similar results for some aspects of 3 excitations

It is our purpose here to demonstrate
of different levels of reality yield

and guite different results for other aspects.
This "model dependence" of some types of G excita-
tion strength is suggested as the explanation
for some puzzling features of magnetic dipole,
and Gamow-Teller or (p,n) excitation strengths.

We direct our attention in the present investi-
gation to the total sum of the & excitation
The elimina-
tion of concern about the details of the final

strengths from a given initial state.

state spectra allows concentration upon the ground
state, the state usually best and most easily
It also

allows us to circumvent worry about the detailed

treated in a given model approximation.

matchups between individual theoretical and experi-
mental final states. The experimental data with
which these calcualtions of total strengths should
be compared are, of course, those of "giant reson-
ance” excitation studies via inelastic or charge-
exchange scattering. Decay experiments, subject
to inevitable Q-value limitations, very rarely

sample the major portion of G-like strength.

Hence with these latter data, comparison with theory

must be on the basis of matching between individual
pairs of states.

Experimentél studies of the giant resonances
for spin excitations of the nuclear ground state
currently feature magnetic dipole electroexcitation
and the (p,n) charge-~exchange reactions. For
now we shall assume that the angular momentum
component of the transition operators for the
Ml and (p,n) or B~ processes is exactly 3. The
isospin properties of these processes are, however,
quite different, of course.
the projection of T, Tz =. (2 - N)/2, unchanged
and hence the isospin of the final states populated
in M1 scattering must be greater than or equal
to the isospin of the initial state (T >[Ti =T,)).
On the other hand, the (p,n) or B~ process change§

TZ_ to 'rz1 + 1, which means that for the typical
i .

The M1 operator leaves -
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neutron-rich target, {(negative T, ) the final,
T, is smaller than the initial T, in absolute
magnitude and hence Tf> | Ti - 1}, It follows
that both M1 and (p,n) or g excitation populate
states with Te =Ty and Ty *+ 1 but that (p,n)
or g~ populates, in addition, states with
T Ty -1,

We have calculated the total strength of
the excitation via the operator 3T of the J = ot
ground states of sd nuclei using the full

£ =

65/2 - 81727 d3/2 basis-space, Chung-Wildenthal
wave functions. FPor comparison, we have also

calculated the total strengths under the assump-
tion that,
C-W results, the ground state wave functions are

single~component states, the wave function being

instead of the configuration - mixed

the lowest (j-j) coupling basis vector in the
sd-shell space; Thus, we can compare configuration-
mixed to pure-configuration results in the same
space. Our results are presented in Tables 1

and I1. It is found that systematically, the
strength from T = 1 to T = 0 is only slightly
quenched by configuration mixing, that T = 1 to

T = 1 strength is quenched by a factor of roughly
two and that T = 1 to T =

factor of five to ten.

2 is quenched by a
The quenching which config-
uration mixing introduces into T =0 to T = 1

transitions ranges between 2 to 10.

Table 1. Total strength of 1.7761 from J=0, T=1
ground states of the sd-shell to all
Jf=1, Tf=0,1 and 2 states.

A e Tt Te?

18(C-wW) 17.44 1.35

18 (pure j-3j) 13.78 5.01

22(C-W) 14.74 5.11 0.21

22(pure j-j) 18.79 10.03 2.01

26(C-W) 15.15 7.86 0.84

26 (pure j-3j) 20.46 15.04 3.34

30(C-W) 14.96 £ 9.22 1.08

30(pure j-3j) 28.83 15.04 5.01

34(C-W) 14.01 7.65 0.57

34(pure j-j) 16.29 15.04 2.51

38(C-wW) 14.87 3.93

38(pure j-j) 11.28 7.52

Table II. Total strengths of 1.7751 from J=0, T=0
ground states of the sd-shell to all
J£=l, Tf=1 states.
A 20 24 28 32 36
c-w 1.39 6.16 11.39 10.14 4.19
(pure j=3j) 13.37 23.39 30.08 22.56 16.04




Lifetime Predictions for

170 and 19“

M.S. Cuttin, B.H. Wildenthal and J.A. Nolen

The completion of the k=500 superconducting
heavy ion cyclotron ag Michigan State University
will provide intense beams in the mass 20-40 region
with energies per nucleon of 20-40 MeV. . This
energy range is expected to be characterized by
the onset of the fragmentation mechanism, a mechan-
ism which seems particularly well suited for the
production of exotic nuclei. The understanding
of the nuclear structure properties of these exotic
nuclei in terms of the nuclear shell model has
prompted this study.

Starting with the effective Hamiltonian of
Reehal and wildenthal,1 which spans the model
space (°p1/2' 065/2,'151/2), a level struct;;e
was generated with.j < 7/2, for the nuclei “’c,
1y, 1%, 19 (see Figs. 1 and 2).

The ground state of ““N was calculated to
be 1/27, well separated from its first excited
state. However, in 17C, the three lowest lying
states (5/2%, 3/2%, 1/2%) are all within 570 kev
of each other, making it difficult to specify the
J" of the ground state. This, along with the fact
that 15c was observed to have ‘an inverted (1/2+)
ground state directed us to consider all three
possibilities as reasonable candidates for the
ground state. Partial half lives associated with
Gamow-Teller transitions are given according to
the formula of Brown, Chung, and Wildentha1.2

cr. . - 6177%14
1/2  B(GTI

The Gamow-Teller matrix element is:
B(GT)1/2 _ 1 T 1 Ti)

= (
TH 172 A
(2(2Ji+1)) -Tzf T, T,y i3

5&5}"(3;xajv)xlllwi>
((283+1) (28741)) /2

<31110gp} 113>

where the following values of the single particle
matrix elements were used.

<d5/51110gp11145,,> = 8.881

<P1/2|||OGT|]|P1/2> = ~2,502
<SI/2|[|0GT|||$1/2> = 7.506
The statistical factors were calculated via the
prescription of Wilkinson and Macfields
3

L A _(lng )"
_ N0 “n o 1 4 2
£=e (36(2W°-9wo-8)P°+%w°1n(W°+P°))

Wo = total electron end point energy
2 1/2
Po = (Wo-l)

The A,'s being obtained from the table in ref. 3.
The Coulomb energy differences were calculated
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according to the formula given by de shalit and
’l‘almi.4

1
Azl = E (zl41) - E (zl) = crzla + 5(1-(-1)% )b

tap(zh) =B (zh42) - B () = 2c+(2zb41)asn

where

zl = # protons outside a closed shell.
Using the appropriate pairs of nuclei in the °p1/2
shell and binding energies taken from Wapstra
and Bos5 we were able to aquire the best values
for the constants c,a,b for the Opl/2 shell via
a least square fitting routine.

The following represent the results of these
calculations.

wsrne.azs

EXCITATION ENERGY (MEV)

LN ' L % (SN ]
199

FPig. 1. The decay of '*N(1/2") to the four dominant
G-T allowed states in !°0, The figure indicates that
approximately 40% of the G-T transition strength pop-
ulates neutron unbound states in the daughter nucleus.

wox.e.e28

| 7 —
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oL V& . 0

Fig. 2. The decay of !7C, with the assumption of a
5/2* ground state, to the three dominant G-T allowed
states in '!’N. Approximately 108 of the transition
strength is predicted to populate neutron unbound
states in 17N,

¢



Conclusion: 1t is generally felt that- the 1. B.S. Reehall and B.H. Wildenthal, Particles

. : and Nuclei 6 (1973) #6.
exclusion of the d3/2 orbit form the calculation 2. B.A. Brown, N. Chung, and B.H. Wildenthal

is reflected in too short a life time. This is PRL 40 (1978) 1631.
. 3. D.H. Wilkinson and B.E.F. Macefield NP A232
due to the fact that the d5/2 and d3/2 contri- (1974) 58. : ‘ »
bution's to the GT matrix element come in with 4. A. de sShalit and I. Talmi, Nuclear Shell Theory

different phase,..reducing the matrix element and (Academic Press, Nev York, 1963).

giving a longer lifetime prediction. Calculations
are now underway to include the d3/2 orbit.
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Lifetimes of Exoti¢ sd Shell Nuclei
M.S. Curtin and B:H. Wildénthal

The sd shell model Bamiltonian of Chung and
wildenthal1 was used to construct ground state
wavefunctions of 31A1, 32Al, 26Ne, 24F, 25?,,and
wavefunctions associated with states of their
corresponding daughter nuclei. Gamow-Teller matrix-
elements were calculated using free-nucleon single-
particle matrix elements following the prescription
of Brown, Chung and Wildenthal,2 from which theore-
tical ftl/2 values were obtained. Finally, calcula-
tion of statistical factors using the formalism
of Wilkinson and Macefield,3
for theoretical halflives. The strong energy
dependence in the statistical factor requires
accurate determination of beta decay energies
if one is to have confidnece in these theoretical
lifetimes. To reduce energy uncertainties as-
sociated with the beta decay process, we use Q
values from the mass table of Comay and Kelson,4
and when possible, use experimental daughter state
excitation energies of Endt and Van der Leun.>
Table 1 presents a comparison between halflives
calculated with shell model Q values and excita-
tion energies, and halflives calcualted with the
modified Q values and excitation energies.

yields predictions

Since
the lifetime, Q value, and branching ratios have
been empirically determined for the beta decay

of 31A1, it provideé us with a valuable check

on the predictive capabilities of this procedure.
According to reference 5, the 2.789 MeV excited
state of 3lsi is either a 3/2+ or 5/2+ state.
Table II represents the detailed partial halflives
to the 4 dominant GT allowed states in 3lsi

for the beta decay of 31, By requitiﬁg theoreti-
cal branching ratios to match experimental branching
ratios we predict the 2.789 excited state in 3lsi

to be 3/2+.
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Table I. A comparison between total halflives
predicted using shell model Q values and
excited state energies (column 1) and
total halflives using Comay and Kelson

Q values and experimental excitation

energies.
Shell Model Modified
Transition Halflives Halflives
26Ne * 26Na 0.30 {sec) 0.19 (sec)
2, 2y, 0.34 0.21
25p , 25y, 0.17 0.07
3, 4 3G . 0.98 0.32
325y 4 32 0.05 0.02
Table II. Presented below are the decay energies,
GT matrix elements, partial halflives
and predicted branching ratios as-
sociated+with the beta decay of
$121(5/27) to the 4 dominant states
in 31gi,
23, EB(MeV) ] B(GTEHI t, (sec) B.R. (%)
3.0 7.85 0.45 0.51 63.22
3.0 5.53 0.59 1.56 20.57
5.0 6.15 0.39 2.15 14.89
3.0 5.06 0.18 24.26 1.32

The discrepancy in the theoretical lifetime
and the experimental lifetime should diminish when
we recalculate the lifetimes using the empirical
single-particle matrix elements of the GT operator.

1. W. Chung: "Ph.D. Thesis, Michigan State Univer-
sity, unpublished (1976).

2. B.A. Brown, W. Chung and B.H. Wildenthal,
Phys. Rev. Lett. 40, (1978) 1631.

3. D.H. Wilkinson and B.E.F. Macefield, NP A232
(1974) 58.

4. Atomic Data and Nuclear Data Tables, Vol. 17
(1979).

5. P.M. Endt and C. Van der Leun, NP A310 (1978) 1.



Shell-Model Calculation of Ml Strength in the Zr Isotopes
' N. Anantaraman and B.H. Wildenthal

The recent observation of M1l strength in
‘'medium-weight nuclei by inelastic scattering
of 200-MeV protons is reported elsewhere in this
volume. The excitation energy at which the Ml
strength should occur in a spin-unsaturated nucleus
can be estimated readily, to zeroth order, from
the energy splitting of the single-particle spin-
orbit partner levels which couple to form the
1* state. For a more accurate estimate of the
location and for studying other properties such
as the strength and the distribution of the exci-
tation, a detailed shell-model calculation is
nécessaty. We have performed such a calculation
for the 9094z, isotopes.

Only heutron excitations were considered,
with 8ozr treated as the core and with the valence
neutrons distributed in the 199/2; 265/2, 351/2,
253/2 and 197/2 orbitals, subject to the restric-
tion that the 99/2 orbital was occupied by either
9 or- 10 particles. This restriction was neces-
sary to reduce the dimensionalities of the pro-
blem to manageable levels. The neglect of proton
excitations may not be a serious limitation in
studying the relative variation of the properties
of the excitation over the range of isotopes,
since they should all have nearly the same proton
character.

The interaction used was of the surface-~delta

type,
> >
vV = -4nV06(r1 - ).

The strength vo, and the energies of the singlé-
particle levels, were determined by requiring
that the low-lying spectra calculated for 91Zr
and 922: agreed with the known levels of these
nuclei. Since only neutron excitations were con-
sidered in the calculation, only a subset of the
known levels--those having primarily neutroen exci-
tation--were used for the comparison. These were
identified on the basis of strong population in
(d,p) reactions. The single-particle energies
thus determined, relative to the 20

were:

Zr ground state,
-11.35 Mev (99/2), ~7.2 MeV (65/2), -6.0 Mev
(81/2), -5.3 Mev (d3/2) and -5.3 Mev (97/2).
The strength of the two-body interaction similarly
determined was Vo = 0.36 Mev.

The M1 strengths of interest are those cor-
responding to the transitions G.s.(0+) > 1% for
the even isotopes ana G.s.(5/2+) e-3/2+, 5/2+
and 7/2+ for the odd isotopes. Even though 91z
is the only stable odd isotope, calculations were
also performed for 3Zr, for the sake of studying
the systematics. Since only neutron excitations
were considered, the Ml operator was proportional
to the o operator (no orbital contribution).
The distributions of Ml strength calculated for
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the various isotopes are shown in Pigs. 1 and

2 as a function of the excitation energy of the
final state. PFor 92'93'9‘zr; histograms of
strengths summed in 0.5 MeV bins are plotted.

The most striking feature of these results
is the concentration of M1 strength in a relatively
narrow range of excitation in each of the nuclei. '
The location of this strength, ~7.5 MeV, is approxi-
mately the same for all the isotopes, in accordance
with what is observed in the (p,p') reaction for
90'92'94Zr, but it is about 1 MeV lower than the
observed value. It is possible that inclusion
of other terms in the residual interaction will
remove this difference while leaving the low-lying
spectra. unaffected.

The calculated widths of the distributions
cannot be comp;red with the data because each
state should have a substantial intrinsic width
on account of high excitation, and this is ignored
in the calculation. But one result shown by the
calculation, that the widths are larger for the
odd-mass isotopes, can be tested experimentally,
provided measurements are made on ?IZt.

In the foregoing discussion, it has been
tacitly assumed that the B(Ml) strength distri-
bution is an accurate reflection of the cross
sections measured in the (p,p') reaction. To
test this assumption, microscopic (p,p') calcula-
tions were performed for the strongest two 1t
states in 922r, using transition amplitudes obtained
from their full shell-model wave functions. It
was verified that the ratio of the calculated
(p,p') cross sections was the same as the ratio
of the B(Ml) strengths.

The summed strengths are listed in Table I
under the columns I, B(M1) and zd B(Ml). ne is
the number of final States for whfch calculations
were actually carried out; for the heavier iso-~
topes, this is a small fraction of the total number
of possible states, which equals the dimension-
ality d¢.  The sum E, B(Ml) is obtained by adding
all the calculated st&engths, while Ig B(M1) is
obtained by use of a closure relation £pplied
to the ground states. The last column, L3 B(M1:

SSM G.S.), lists the results of the closurf relation
obtained using alternative ground-state wave functions
corresponding to the simple shell model (SSM)

limit, constructed by assigning the dominant comp-
onent of the full ground state eigenvectors an
amplitude of 1.0.

There are several points to notice in Table I.
(i) Even though practicality restricted us to
a small fraction of final states in the case of
93’94zr, a major portion of the total ML strength
is located in these states. Thus the location

and width of the distributions for 93'94Zt are



MSUX-81-376

t 10 _— TO
| 5% M1 STRENGTH DISTRIBUTION o2, |11 39 |
90 +
7r G.S.—~
Gs.—~1t.  Yz¢ Iz¢ oz,
. G.5.~3/2* G.S.~5/2% . GS.~T/2t
NC | .
3 3
-
=
m
2F i

; I S ll NS I | R me l al
7 9 3 5 7 96 8 10 2 4 6 8 82 & 6 B 10
EXCITATION ENERGY (MeV)

Fig. 1. Distributions of ML strengths calculated for transitions from the ground states of ’°”"”z:'
to excited states.
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Fig. 2. Distributions of Ml strengths calculated for transitions from the ground states of ”"'z:
to exc1ted states.

58



Table I. Ml Strengths_in the 2r Isotopes.

Nucleus Transition ne dg I, B(M1) "Lq B(M1) gde(Mizssu G.s.i
) tu2) )
e . Hp u,l____ Vi
90, c.s. » 1* 1 1 15.50 15.50 15.50
9y G.s. » 372* 16 16 3.98 3.98 4.84
» 572t 23 23 1.92 1.92 5.54
> 7/72% 27 27 6.09 6.09 6.89
924, G.s. » 1* 24 69 15.34 15.48 18.29
93gr G.s. » 3/2% 66 346 3.85 3.95 5.03
> 5/2%* 66 474 3.67 5.75 7.43
> 7/2% 66 550 3.18 6.25 7.82
94 c.s. » 1* 66 788 14.83 15.57 21.09

*
Excluding G.S. + G.S. transition!

calculated reliably, despite the restriction just
mentioned. (ii) The constancy of the total strength
g B(M1) is a remarkable result which is not in-
tuftively obvious. (iii) The effect of correlations
in the ground state can be studied by comparing

the numbers in the last two columns of Table I.

It is seen that the effect of the correlations
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is to progressively reduce the Ml strength as

one goes to the heavier isotopes.
of 94

In the case

zr, the full shell-model strength is quenched
by about 25% relative to the simple-configuration
value.



An Effective Interaction for Inelastic Scattering Derived From the Paris Potential
N. Anantaraman, H. Toki and G. Bertsch

Some years ago, Bertsch et al.l derived from
the phenomenological Hamada-Johnston and Reid
nucleon-nucleon (N-N) potentials effective inter-
actions for inelastic nucleon scattering. 1In
the present work, a similar procedure has been
carried out starting with the Paris N-N potential,
an analytic parameterization of which became avail-
able recently.2 New phase-shift data obtained
in the 1970's went into the development of this
potential, and it is based on a more fundamental
theory of the N-N interaction than the earlier
potentials. These reasons motivated us to study
whether the effective matrix elements derived
from it differed in any significant respect from
those of ref. 1.

From the Paris N-N potential, G-matrix ele-
ments in the harmonic oscillator basis were obtained
by the method of Barrett et al.3
in solving the Schrodinger equation

This consisted

(E + %sz - 3 m?? - vy =0

for eigenerengy B and eigenfunction ¢ in various
two-nucleon channels (lso, 3P1' etc.). For the
331 and 3D1 channels, which are coupled by the
tensor part of the potential, a set of coupled
differential equations was solved. ¥ has a high
degree of overlap with some oscillator function
bny- The free G-matrix elemeqts were then obtained
from the relation

[o]
Gn1 = <Ony |G1ony>= E-Byy v

where Enl is the oscillator energy in state $n1e

Because of the energy dependence of the Paris
potential, the computer programming required was
more complicated than for the potentials used
in ref. 1. It was tested by calculating the phase
shifts in the uncoupled channels and verifying
that they agreed with the values reported in ref. 2.
For the 331-3D1 calculation, it was verified that
the deuteron binding energy and wave function
were correctly reproduced.

The next step was to correct the free G-matrix
elements for the Pauli blocking effect by intro- B
ducing an energy gap of 40 MeV between occupied
and unoccupied orbits.3 The resulting effective
G-matrix elements are listed in Talbe I. They
agree for the most part to within 10% with the
values obtained from the Reid potential (see
Table 3 of ref. 1). Only in the case of the column
headed n=3 for the SE channel are there signifi-
cant differences. But, since they occur mainly
for highly nondiagonal matrix elements, these
differences do not noticeably affect inelastic
scattering results.
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Table I. Oscillator G-matrix elements of the
Paris potential in Mev (fw = 14 MeV).
s/s n =0 1 2 3
n' =0 -6.73 -5.27 -3.73 -1l.28
singlet 1 -4.84 -3.47 ~-6.46
Even 2 . -2.61 -1.44
3 2.51
s/s n=20 1 2 3
n* =0 -9.63 -8.90 -7.55 -6.07
Triplet -8.43 -6.82 -5.63
Even 2 -5.83 -5.02
3 -2.82
P/P n=0 1 2 3
n' =0 2.52 2.37 2.11 1.89
Singlet 1 3.03 3.00 2,81
odd 2 3.39 3.41
3 3.74
P/P n=0 1 2 3
n' =0 -0.08 -0.23 ~-0.09 ~0.05
Triplet 1 -0.24 -0.05 0.01 -
0dad 2 0.04 0.13
3 0.31
s/D n=0 1 2 3
n' =0 -5.54 -7.62 -8.66 -9.21
Tensor 1 -2.61 -5.09 -6.90 -8.11
Even 2 -1.35 -2.95 -4.72 -6.23
3 -0.72 -1.66 ~2.98 -4.39
P/P n=0 1 2 3
n' =0 0.78 0.75 0.63 0.54
Tensor 1 0.92 0.87 0.79
0dd 2 0.95 0.93
3 1.00
D/D n=0 1 2
n' =0 -0.14 -0.13 -0.12 -.21
LS 1 -0.18 -0.21 -.47
Even 2 -0.26 -.70
3 -.91
P/P n=0 1l 2 3
n' =0 -0.57 -0.90 -0.96 -1.06
LS 1 -1.28 -1.40 -1.55
odd , 2 -1.71 -1..91
3 -2.19

These matrix elements can be used in dif-
ferent applications, such as nuclear structure
calculations and the extraction of the parameters
of the Landau-Migdal force. Here we focus on
the application to inelastic nucleon scattering.

A least-squares fitting of the effective G-matrix
elements in the various channels to a set of Yukawa
potentials with at most four ranges was performed.
This was because the distorted-wave inelastic
scattering program DWBA-704 can handle a sum of
central, tensor and spin-orbit components specified
in the form of a superposition of Yukawas of four
different ranges. (Actually, the form of the



tensor part is rZY(r).) The choice of the ranges
was physically motivated, as discussed in ref. 1,
and consisted of 0.25, 0.4, 0.7 and 1.414 fm.
The one-pion exchange potential tail was imposed
on the central part of the interaction.

The results are shown in Table II where,
for each channel, two rows of interaction strengths
are given. The first row is that derived from
the Paris potential, the second that from the
Reid potential.
the two rows is noteworthy.

The similarity of numbers in

It indicates that

the differences that exist between the theoretically
motivated Paris potential and the earlier, pheno-
menological potentials, will not show up in inelas-
tic scattering results.

To test this reasoning, inelastic scattering
cross sections were computed with the microscopic
code DWBA-70 for various levels excited in the
24Mg(PrP') reaction. 2Zwieglinski et al.> have
studied this reaction experimentally at 40 MeV
and also analyzed it microscopically using a parti-
cular choice of the interactions given in ref. 1.
We repeated this analysis, and also did similar
calculations using the two sets of interaction
listed in Table II. The shapes of the angular
distributions calculated with all three sets of
interaction are identical, and the normalizations
(N) between the measured and calculated cross

Table 1I.
Channel Name Ry = 0.25 fm
SE Paris 11466.
Reid 12455,
TE Paris 13967.
Reid 21227,
f{o] Paris -1418.
' Reid 29580.
TO Paris 11345,
Reid 12052,
TNE Paris
Reid
TNO Paris
Reid
LSE Paris -5101.
Reid -4382.
LSO Paris -1897.
Reid ~2918.

sections are similar. Table III lists the values

of N obtained for some of the states in 24Mg.

For all three interactions, these are gquite simi-
lar--in both T=0 and T=1 channels, and for both
spin-flip (odd J) and non-spin-flip (even J) transi-
tions. Thus we conclude that the effective inter-
action for inelastic scattering obtained form

the Paris potential is very similar to those derived

from the earlier, phenomenological potentials.

Table II1. Normalizations for levels populated
in 24Mg (p,p') at 40 Mev. )
b

JrT Nreid Yparis: NZWieglinskia)
2%0 2.67 2.74 3.89

3%o 4.83 4.95 6.04

2*1 2.64 2.69 3.20

3f1 1.69 1.67 1.82

a) Values obtained using the interaction and
method of ‘ref. 5 but with normalizations done
by the present authors.

1. G. Bertsch et al., Nucl. Phys. A284, 399 (1977).

2. M. Lacombe et al., Phys. Rev. C21, 861 (1980).

3. B. Barrett et al., Phys. Rev. C3, 1137 (1971).

4. R. Schaeffer and J. Raynal, unpublished.

5. B. Zwieglinski et al., Phys. Rev. C18, 1228
(1978).

Best Fit Interaction Strengths in Mev

-30.9
-28.4

244. 15.6
263, "13.8
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The Schematic Model for odd-A Nuclei
J. Ginocchio* and 0. Scholten

One of the basic assumptions in the 1BA
model is that the low-lying collective states
can be described in terms of pairs of particles
coupled to angular momentum J=0 or 2. In a realistic
shell model calculation this is true to a great
extent. Recently Ginocchiol has introduced a
model, called the Schematic Model, in which the
IBA sector (formed by products of a collective
J=0 and a J=2 state) of the basis is completely
disjoint. One can make therefore an exact cor-
respondence between the states in the fermion
and those in the boson model. This exact relation
allows one to study in detail the mapping of opera-
tors from the fermion space into the IBA boson
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space, taking the two particle structure of the
bosons correctly into account.

The  correspondence between the Schematic
model and the boson model has only been formu-
lated explicitly1 for the case of an even number
of fermions. However especially odd A nuclei
are interesting to study since the effect of the
Pauli principle (blocking) is extremely important.
We are therefore extending the method to odd-systems
which turns out to be non trivial. Of special
interest is the operator for single particleltrans-
fer.

* LASL, Los Alamos, NM 87545, ‘
1. J.N. Ginocchio, Ann. of Phys. 126 (1980) 234.



A Microscopic Approach to the IBA Model
0. Scholten

In the IBA model the low-lying collective
states in heavy and medium heavy nuclei are des-
cribed in terms of a system of interacting s and
d bosons. A boson is regarded as a collective

two particle state,

+ z o F 4+, (0)

S kjuj j(cjcj) (la)
+ - 1 + + (2)
dm **jzj'sjj' I:EEET (Cjcj.)m {1b)

where the summation runs over spherical shell
model states. One of the open problems in the
IBA approach is the calculation of the s and &
boson structure coefficients o, and B'j' from
a microscopic model. This is especially important
for odd-A nuclei since they appear explicitly
in the calculation.?

The coefficients a, and B'j' should in prin-
ciple be calculated from a diagonalization of
the Hamiltonian in a full shell model basis.
For the nuclei we are interested in the size of
the matrices to be diagonalised is however pro~
hibitive.
treat the neutrons and protons separately. 1In
the shell model the separate treatment of the
neutron and proton degrees of freedom reduces
the dimension from about 1014 to 105 for a typical
medium heavy nucleus.

In an alternative approach we will

In the present approach
we will reduce the dimensiqpality of the problem
even further to about 20, The Hamiltonian which
we use as a starting point is:

+ VvV
v

H =

(2) 4(2)
H o+ n¢ + R “7 0 Vo (2)

where

z

" =%i%nj +§ . 33 (c;c;.i‘°’(ej6j)‘?’ (3a)

and

(2)= P
an

33 ijl (Cfa-u)(z)

373 'm

.

As has been pointed out by 'ralmll the resiudal
interaction between like fermions, v and Vv ,
Since we will truncate %&r
space at v = 2, J = 2, V is imply taken equally ’

attractive for all J = 2 states.

conserve seniority.

(2) (a2 (2)
) .(cjcj') {3c)
To determine the structure coefficients of the
bosons we will take an iterative approach. To
solve the problem for the proton bosons we will
assume that the neutron sector has already been
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solved which means that we can diagonalise the
Hamiltonian(2) in the space spanned by

' N -1
s;We |8V a > (4a)
in the neutron sector and
N N -1
Is ™, ds 7 7 (532 > (4b)

for the protons. 1In eq. (4) the number of bosons
is half the number of fermions, N=n/2. 1In the
J=2 states in eq.  (4.b) two fermions are coupled
to angular momentum 2 and as a consequence there
are only N-1 bosons.

The calculation of the matrixe elements of
(2), in the basis (4) can
be done as proposed, by Otsuka.2 We will take
here a slightly different approach which is simpler

the Hamiltonian, eq.

but introduces more approximations. The pure
neutron part of the Hamiltonian can be replaced
In the
evaluation of the proton part one must however

take into account that the fermion operators

by eqng apart from an overall constant.

c; do not commute with the bosons,

(s et

) 5% g

The Hamiltonian can be put in a more transparent

form by introducing the guasi-particle operators
+
b
operators.

Ao which by definition commute with the boson

One can express the fermion operators
in terms of these quasi-particles, giving in lowest
order3

V.
+ -
et e u.at 4 s*a, B

jm Jim _% J (&)

where uj and u, =
with BCS. 1In this case the v. are related to
the s boson as vj = y/Na:. It can easily be shown
that v? = <sN|nj|sN>/(2j+1) as implied by the
occupation probability interpretation. If we
simply substitute eq. (6) in eq. (2) and keep
only the terms that will not vanish for the states

1—v§ are introduced in analogy

under consideration we obtain, apart from an over~
all constant

2_2.+~ q
= + +p . (us-vs P+ V4
H LW ndv Ngs z](u] v )gjnJ o

j
iy ey 4

- ) . » I » 3 A . Y

%zjj. 33" Cugvgug0vg033t 4 2 v5 64500 +

4 z : q
+ sz [Vl + j'(uj'vjv(23+l)ujvj]nj +

-G (nu.v.nQ)z +

13373
o L 575750 gcatat,)(2)
+ K ijj'qjj' Py (s(ajaj.) + h.c.)



y(2)

-
+ K*! ‘s (Vi =Usls LA
K Q\,J-J?.qJJ'("J"J' ujuje) (a5ag

where ng is the quasi-particle number operator,
K* and‘sd can be calculated from the structure
of the nelitron bosons and

eg =IyesVi2IHLIMN

SR AL G
The Hamiltonian eq. (7) is similar to the BCS
Hamiltonian.4 However, by introducing quasi-
particles in the BCS formalism we are faced with
the problem of the violation of number conserva-
tion. For a single j-shell this shows up by the
fact that the matrix element of the number opera-
tor equals 2N + (u?-vg). Also in the present
approach we can see the same symptoms.
is however completely different.
of Otsuka,2

we obtain for the image of the number operator

In the approach

2
2 sy 2_ 2 v. q
vj.(ZJ +1) + (uj A& % ))nJ

which obeys znj = 2N+1. By comparing with eq.

(7) it can be seen that the present approach

The origin

which is closer to the exact solution,

(10)
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‘eq.

corresponds to the approximation v%/N<<1. From

(10) it can also be seen that the gauge trans-
formation (eq. 9) is necessary to obtain the correct
quasiparticle energies. The Hamiltonian eq.

be diagonalised numerically.

{(8) can
The coefficients

. can be determined by minimizing the energy
of the OI state. The coefficients Bjj' follow
from the structure of the 0; or 2; state in this
basis. With this structure coefficients one can
calculate the parameters of the IBA model.

It should be noted that the present approach
is valid for spherical as well as deformed nuclei.
Contrary to what is attempted in other models,
such as RPA we are not calculating the actual
nuclear ground or 2; state, but only the parameters
for the boson-boson interaction. The nuclear

states follow from the IBA calculation.

1. 1. Talmi, In "Interacting Bosons in Nuclear
Physics", F. Iachello ed., Plenum Press, New
York (1979) p. 79.

2. T. Otsuka, Ph.D. Thesis, University of Tokyo,
Japan (1979).

3. O. Scholten, Ph.D. Thesis, University of Gronin-
gen, The Netherlands, (1980).

4. A.M. Lane, "Nuclear Theory", W.A. Benjamin,

New York (1964).



A Pseudo-Spin Symmetry in the IBFA Model
0. Scholten

In some medium-heavy odd-A nuclei a striking
doubling of levels, with spins J and J-1, have
been observed. 1In the IBFAl'2 model this can
easily be expldined in terms of a pseudo-spin
symmetry.
Hamiltonian whenever the odd-feérmion can occupy
two single particle (s.p.) orbits, which differ
in spin by one unit and have equal s.p. energies
and thus also equal occupation probabilities.
The orbital angular momenta can be different.

The symmetry is most easily worked out in
the L-s rather than the usual j-j coupling
scheme.
by

The exact symmetry occurs in the IBFA

The relation between the two is given

Ja ,(R, WL,1/2; I> =

L4+ 1/2
z (-1)RI2 rryrET
j=21-1/2 X
(1)
R 2 L
IulRl(lll/z)j;J>
/723 3

where R is the boson total angular momentum and
a denotes the other quantum numbers necessary
to label the boson state uniquely. The &
duced in Eq. (1) is not necessarily the real s.p.
orbital angular momentum, but is chosen such that
the j-values of the two involved s.p. orbits can

be obtained from it by coupling a pseudo-spin,

i.e. L= (j + j')/2. The symmetry is based on

the fact that in the IBFA model the boson fermion
interaction stems from a nucleon-nucleon guadrupole
force which acts only on the pseudo-orbital angular
momentum.

intro-

Because of the spin independence of
the interaction, the energies depend only on
(2,(R,2)L) and the levels in the spectrum thus
occur in doublets with spins J = L + 1/2,

Although unequal occupation probabilities
or unequal s.p. energies break the symmetry, still
several examples can be found. 1In Fig. 1 the
positive parity spectra of 151Eu and 153Eu are
shown, in which the odd proton occupies the close
lying 14 5/2 and 0g 7/2 orbits.

The present symmetry predicts also a simple --
select;on rule for single particle transfer, namely
that levels with LA will not be excited. As
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an example the measured spectroscopic factors
for 1513u and 153Eu are given in Fig. 1.
with L#L=3 is strongly excited. The nicest example
is the g.s. of 153Eu which is not excited in d
transfer although it is the lowest 5/2+ state.
In the symmetry discussed here the actual
strcuture of the even-even case does not entér,
it is entirely related to the odd-particle. 1In
this respect it should be distinguished from the
super-symmetries discussed in Ref. 3.

No state

5/2

1
ISlEu |53Eu
L L L
E
MeI| e
.
4 —
osp —s— . 6 p
/_ —
3 5
2, 047 / —
003 £
- 4
2
— 7 —
‘3
— ‘1o
27 2
ol 24, 3= 2 |
Fig. 1. The levels in the positive parity

spectrum of !'3!'Eu* and !%3Bu® have been ordered
in doublets on the basis of excitation energies
and spin assignments. It is furthermore assumed
that the pseudo-angular momentum, L, increases
for the levels in an experimentally well estab-
lished band. For each doublet the value of L

is given, the level with J = L - 1/2 is plotted
on the left and J = L + 1/2 on the right. The
value of the d@ 5/2 and g 7/2 spectroscopic factor
as measured in (*He,d)¢’’ is also given in the
figure. t
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Forward Angle Inelastic Scattering
G. Bertsch and 0. Scholten

Inelastic scattering reactions are particu-
larily interesting at forward angles because the
low momentum transfer probes the collective res-
The collective
cross-section is however obscured by a background
which we would like to understand better. We
have investigated the one step contribution to
this background and shown that it accounts for

ponse of nuclei to external fields.

the cross~section below 40 MeV excitation as ob-
served in proton induced reactions at 200 and
800 Mev.t

The double differential cross-section is
facotrized as

do
ande = an lwn Nege S(TE) (1)

where %%INN is the nucleon-nucleon cross-section
at the same lab energy and angle, Neff is the
effective number of participating particles and
S(qg,E) is the normalized response function.

The effective number of nucleons is calculated
as

Nege = o /oy (2

where ol is the total cross-section for single
collision scattering and can be calculated using
Glauber2

In the Fermi gas model for an infinite medium

theory.

the response function can easily be calculated

giving the imaginary part of the Linhard Eunction.3

This response function is in variance with the

data in two respects: i) Considered as a function
of B at a fixed value of g, S(q,E) is Bearly tri-

" angular in shape for small values of g as is shown
in Fig. 1. ii) At small momentum transfer, for

a given excitation energy, S{(q,E) vanishes, while

much of the data appear to be independent of g

in the forward direction. To improve on these,

a better approximation is needed which takes expli-

éitly the nuclear surface into account.

T T T T
"*Sn(p, p')
sk 800 Mev |
3 Oap=5"
s
5
)
E
op- -
b F
T
o
o
5k -
“/u
) 1
0l f I
0 10 6 ES a0

£, Mev
Fig. 1. Experimental and calculated enérgy
spectra for 800 MeV (p,p') on !'!'®3n at 5° lab.
angle; curve F gives the Fermi gas model prediction,
curve I is the cross-section for direct knock
ggdtll is the cross section leading to unbound
ates. :
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Calculations in Glauber theory show that
the inside of the nucleus does not contribute
to the single collision scattering. To conven-
iently model the surface we consider a semi infinite
slab of nuclear matter. The single particle wave

functions are constructed in the potential
V(r) = v /(1+e*/?) (3)

using Vo = ~45 MeV and a = 0.75 fm. The fact
that the reaction takes place only at the surface
is expressed by including explicitly a cut-off
factor in the scattering operator

o(g,r) = eiqr/(l-re(z-zo)/aco))s (4)
For the case of 800 MeV protons we obtain
2, = -0.6 fm and a_ = 0.4 fm by fitting ao‘!)/ab

as can be calculated from Glauber theory. 1In
an actual nucleus the transferred momentum g can
take all possible orientations ¢ with respect
to the surface, depending on the azimuthal angle
of the surface element.
averaging over ¢.

This we account for by
This procedure can be justified
by the fact that experimentally in the angular
distribution of the background cross section no
interference patterns have been observed. Using
energy and momentum conservation to eliminate
some of the intergrals, we obtain

S(a/E) = 287" ayfak,ak )\ [k2-k2-k2
[}

2
((k!)“-2mv ) :
z [ (5)
[<pkez)|0(qrz) [y (k' ,2)5| 2

X
e 2_.2 *
. dkz(kF-kz) <y {ki2)| (q,z)(q,z)|¢(k,z)
The momenta k and k' of the bond and scattering
state are related by energy and momentum conserva=-
tion as
2 2 2

k!“ = kz + kg

: + 2m(E+V,) - (k +qsing)? (6)

We have numerically evaluated the response function
for two cases: 1) k;z > 0, which corresponds ’
to the knock-out process in which the nucleon
escapes from the surface (curve I in Figs. 1,2).
i) k2
the knocked-on nucleon to unbound states (éurve

ITI in Figs. 1,2). The latter explains the data
well with the exception of the very forward ang;es'

> 0 corresponding to the scatte:iég of

where it underestimates the amount of Pauli blocking.
It is shown that direct knock out (curve 1) ac-
counts only for a fraction of the cross section
below 40 MeV excitation, only at higher excitation
energies it forms a substantial contribution to

the background.
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[ £ "8Sn{p,p’)
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Eyx=30 Mev
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Fig. 2. Experimental and calculated angular
distribution for 800 MeV (p,p') on !!'fgn at
= 30 MeV. The curve labels have the same
meaning as in Fig. 1. Curve A follows from
an analytic formula not discussed here.
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A detailed account of this work in in
progress.
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Determination of the Landau Parameter g' from the Giant Gamow-Teller States

H.

The recently obtained (p,n) data on the giant
Gamow~Teller states in heavy double closed shell
nuclei are used to extract the Landau parameter
g', the strength of the particle-hole interaction

in the spin-isospin channel at zero momentum transfer

(q=0). We take one and two pion exchanges in
addition to the Landau term as the residual inter-
action and determine the strength g' from the
excitation energies of the giant Gamow-Teller
states in the neighboring nuclei of 48Ca and 9°Zr.
We take the Woods-Saxon potential for the
radial wave functions and the spin-orbit splitting
from the optical model analysis of Becchetti and
Greenless. Using the excitation energies of the
Gamow-Teller states; E, = 10.4 MeV for 48Ca and
E_= 8,7 MeV for 9oZr, we obtain g' = 0.55 for
4§Ca and g' = 0.40 for 9°Zr with the zeéro-range
interaction. ‘The addition of the v“ and vzﬂ sub-~
stantially increases these values to g' = 0.77
for 48Ca and 0.61 for 9°Zr. Furthermore, we have
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considered the exchange term of the one pion ex-
change and found that this term has only a little
effect on the value of g'. The inclusion of the
finite range interaction improves the excitation
energies and the transition strengths for the
lower M1 states.

The present investigation suggests that the
Landau parameter g' might have a large mass depen-
dence even after about 10% errors are allowed
for g' due to the experimental determination of
the excitation energies and the 1.s splitting
energy. This trend might be supported by the
similar calculation of Krewald et al. performed
in the Pb tegion.1 They obtain g' = 0.50,
the value of which is converted from 98 = 0.65
to the present unit.

1. S. Krewald, F. Osterfeld, J. Speth and G.E.
Brown, Phys. Rev. Lett. 46 (1981) 103.
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Quenching of Magnetic Transitions in Ca

*
H. Toki, A. Harting,

We apply the quenching mechanism of the mag-
netic transitions via the Aisobar-hole intermediate
excitations to the case of the J" = 1* state at
E, = 10.23 MeV in 48Ca.l The recent backward - )
(e,e') measurement yielded B(Ml) = (4.0 + 0.3)uN,
which is considerably small as compared to the
simple shell model prediction B(M1) = 12.ou§.2

The Ml operator is

>

+ > .q +
i@ Ei 8 gy I by My (4 EE) (ugheaug) (1)
’

L . S
M@ ti®) = i @ g,

where blO = /7273, blz./m, g = 0.44uN, uy = 2.35uN,
YlLM are vector spherical harmonics. In the pre-
sence of virtual A-hole excitations, the isovector
part of the Ml operator is renormalized as

Wo(@Eids 1o fakd e G0
L'=0,270, 73 "1L' Y’ H0)T470E

~ )
where the polarization tensor ug;i (k,q) is obtained

(k.q) (2)

through the A-isobar hole excitations mediated
by the A-hole interaction

2
£* 3 4 9 >
W(q)= v (q)s S.q + VvV 5Tx4.8.x (3)
0= (v, (@)8)7a 5,9 + V. (@)51x3-5,xq
n

-
+ q'§1-§2)T1.?2

we take the Chew-Low rélation 5*2/4 =4fz/4 =0.32.
Calculated results for the pA-induced quenching
effect on the shell-model B(Ml) value are presented
in Fig. 1. Here the correlation parameter g°
has been varied within a reasonalbe range;
0.5 < g' < 0.7. With g* ~ 0.55, the B(Ml) value
is qaenched by about a factor of two.
We demonstrated that a large fraction of
the quenching strength is due to the Aisobar excita-
tion. The remaining piece of the required quenching
may be traced back to open-shell components which
reduce the weight of the (fs/zf;}z) combination,

although not by a very large amount. In fact,
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B (M1)

* . wk
W. Weise and A. Richter

.

the high resolution 48

identified several weak Ml states in the vicinity
of the B, = 10.23 MeV state.? The total experi-
mental strength is IB{(Ml) = 5.2u§ and is very
close to the prediction of the p-hole polarization
as shown in Fig. 1.

Ca (e,e') experiment has

pl “8Ca (1310.2 MeV)

shell model

12 o o e e e —— —
1

(fslz 7/2 )_

10

A -hole polarization

b B 7777777 77777,
exp.

y)a ] 1 L

0.5 0.6 07

Fig. 1. The B(Ml) value for the J" = l+ state
at B, = 10.23 Mev in “?Ca. The calculated results
with" the isobar-induced quenching effect are
shown by the solid line as a function of the Landau
parameter g'.
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The Beta Decay of 14566
D. Cha and G. Bertsch

Nuclear response theory, as developed by " S(E) = E|<f]ﬁ1o>lzﬁ(zf-no-5f
Bertsch and Tsai1 has recently been applied2 to £ . . (1)
the charge exchange reaction for the ot strength, = %jd3rd3r'F (r)Im(G(r,r*,E))F(c")

and shows good agreement with. the data in the where G(r,r',E) is the particle-hole Green's func-

tion. The transformation from the particle-hole
representation to the quasiparticle representation
is straightforwqrd and can be found in many sﬁan-
dard text books.7 For beta decay of odd mass
nuclei, we start from a one~quasiparticle ground
state and the Gamow-Teller operator connects to
one- and three-quasiparticle excitations. The
quasiparticle configurations of these states are
depicted sybolically in Fig. 1 where (a) shows
ground states of parent and daughter nuclei in

B+ decay and (b) shows one- and three-quasiparticle
excitations with the excitation energy E_ in the
daughter nucleus. The unperturbed Green's function

whole range of medium and heavy nuclei. This
encourages us to try it on Gamow-Teller beta
decays. Due to the large population of the final
states in the decay of heavier nuclei, there has
been few sophisticated calculations of the beta
strength function. It is commonly assumed that
the sErength is a smooth fhnctlon peaked at the
position of the Gamow-Teller giant state.3 How~
ever, most phenomena associated with beta decay
depend only on the low-lying part of the strength
function. Klapdor and Wene pointed out in their
recent review article4 that the presence of struc-
ture in the low-lying strength function can have
a strong effect on the predictions. The nuclear
response theory can deal effectively with the
large space of exciations possible in medium and

(o} Ground States

heavy nuclei, so it should be useful in the calcu-

lation of structure in the low-lying strength

function.

B.C.5.VACUUM 8.C.S. VACUUM

A good example of a beta aécay strength func-

tion which exhibits structure is the beta decay

Parent Nucleus Doughter Nucleus
145Gd > 145Eu.

The data of Firestone et al.> (Z.N) (Z-LNe D)
show concentrations of B+ decay strength at 1.04,
1.82, 2.48 and 4.50 MeV in the daughter nucleus.
In this work, we adopt the same model as Ref. 2,
namely the TDA based on either Woods-Saxon or
Skyrme Hartree-Fock wavefunctions. In addition,
we introduce pairing correlations in the ground
state. The pure Hartree-Fock shell model does

E =€ -
not allow the decay of 14564 because all the neu- ) .
One—-Quasiparticle Three—Quasiporticie

{b) One ond Three-Quasiporticle Excitotions

{ P

Q

B.C.S. VACUUM a{;s. VACUUM

€y = Eu ‘Gﬁoeﬂ';s%

tron levels energetically accessible for this .

;fans1txon are alre?dy Ei?led. 'We therefore modi- Fig. 1. Quasiparticlg regtesentation‘of ground
ied the theory by including pairing correlations states and excitations in g* decay of odd mass

in the ground state. We also use a simple delta- nuclei.

function as a residual interaction with the

strengths of 220 MevV-£fm> for Woods-Saxon and 200

Mev-fm3 for Hartree-Fock single particle spectra.

These are determined by the giant Gamow-Teller

strength of the (p,n) reaction in Ref. 2. It

has been shown‘by Halbleib and SOrenson6 that single

G°(E) for 5+ decays is thus given by two parts,
one from one-quasiparticle and. the other from
three-quasiparticle excitations and can be written
as:

1 A 2
individual Gamow-Teller beta decay transition c°(E) = ﬁ l%flglfg;l_vivﬁo +
rates in medium-heavy spherical nuclei can be o "8y ‘
well fepresented by the pairing plus quadrupole ' Three Y 2 (2
) r  J<eBB [F[8>|" 5
model, but they did not calcualte the overall a8 e ¥cE VaU8
strength function or consider nuclei as large a "B
as 1 Gd. ’ where g and g label quasiparticle states, U, v
The strength function S(E) of the external and ¢ the standard BCS amplitudes and energies
field ? is defined by sum of overlaps between and [B°> the one-quasiparticle ground state of
all the excited states |f> and the initial state the parent nucleus. For Gamow-Teller decays,
|0>. The expression of S(E) in the coordinate the operator F is given by
space using the particle-hole Green's function :
is derived in Ref. 1 which is given as F=ot, . (3)
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Thus the only difference between the theory of
Ref. 2 and the present is the replacement of the
particle-hole Green's function by Eq. 2.

In the pairing scheme, the basis of the res-
ponse consists of two-quasiparticle states. Since
much of the excitation energy comes from those
energies, the result is quite sensitive to the

"the second column the energy with respect to the

ground state of 145Eu. The last column gives
the product of pairing amplitudes VU or V2 for
the three- or one- quasiparticle excitations re-
spectively. The major low-lying peaks of Eq. 1
is tabulated in Table 2 together with the data

of Ref. 5. The strengths S(E) are converted to

spacing of the single particle spectrum. For
that reason, we adjusted the spin-orbit strength
of the single particle Hamiltonian to reproduce
the known splitting of 0.75 MeV between vSy so

and vhll/2 levels in 145Gd. The pairing strength

the corresponding ft values by making use of the
Eormula8 for the Gamow-Teller decay given as

£t = 4140 sec/S(E) (4)
The strength is normalized to 3 for the decay

was adjusted to reproduce the empirical one quasi-

of an isolated proton. The first column is excita-
particel energies of 0.88 and 0.95 MeV for neu-

tion energies with their unperturbed quasiparticle
configurations. The second column is the log(ft)
values. Although the calculated strength function
reproduces the locations of the major peaks below

trons and protons respectively. We determined
for neutrons from the binding energy systematics
of N=80, 81 and 82 and for protons from 2Z=62,

63 and 64 binding systematics. 3 MeV excitation energy, we need an uniform quenching

factor of about 40 to get the measured strengths.
We show the log(ft) values after introducing this
quenching factor inside the parentheses of the
second column. The Hartree-Fock calculation shows
the lowest peak at 1.3 MeV whereas Woods-Saxon
does not have one. This is because of the dif-

In Table 1, we list low-lying excitations
in 145Eu which contribute to the Gamow-Teller
strength function. The first column shows config-

urations of one- and three-quasiparticle states,

Table 1. Quasiparticle configurations

*

Configuration E, VU or VV ference in the single particle spectra between
oF WS éF &; two models. In Woods-Saxon potential, the states
__~-.__-___,_______——:——m———;——— ("51/2) and ("ds/2Vd3/2V51/2) are nearly degenerate
("51/2) 1.18 1.73 .19 .16 and give a single peak at 1.9 MeV. Our calcula-
(nd vd vs 2) 1.81 1.79 .35 .30 tion also has some small peaks between major peaks
5/2773/2771/ which are not shown in Table 2. However, the
("hll/ZVhll/zvsl/Z) 2.50 2.50 -12 -13 theory does not have any state that corresponding
(nd3/2vd3/2vsl/2) 3.32 2.83 .08 .10 to the measured 4.50 MeV peak though it shows

a very strong state above 8.0 MeV, which is well

(nd vd vs ) 4.27 3.81 .09 .08
5/2775/2771/2 outside the 0 window. The state has a structure

("63/ZVd5/2vs1/2) 5.77 4.86 .02 -03 (nhyy /pVhg /5V8) /3) which Firestone et al. identi-
(ng7/2vg7/2vsl/2) 5.83 3.56 .08 .18 fied with the observed 4.50 MeV peak. They argued
("h11/2Vh9/2vs1/2) 7.99 7.83 .45 .53 tha? the ?pxn-orb%t energy was 5.5‘MeV, and the
residual interactin would lower this to 4.5 MeV.
(n99/2v97/2vsl/2) 8.50 11.92 $18 -09 We have a much larger spin-orbit splitting, which

is necessary to £it the neutron single particle

Table 2. Peaks of Gamow-Teller decay strength in 145Gd.

Hartree-Fock ) Woods~Saxon Experiment

E, (MeV) log(ft)(*) E, (MeV) log(ft)(*) E, (MeV) log(ft)
1'3(“51/2) 4.4 (6.0) - - 1.04 6.5
2.0(nd5/2vd3/2vsl/2) 3.7 (5.3) 1.9(nd5/2vd3/2vsl/2) 3.8 (5.4) 1.82 5.3

+{n 51/)25

2.5(nh11/2vh11/2vsl/2) 4.3 (5.8) 2.5(nh11/2vh11/2vsl/2) 4.3 (5.9) 2.48 6.0
- - - - 4.50 4.8
8.5(nh11/2vh9/2vsl/2) 3.1 (4.7 8.4(nh11/2vh9/2vsl/2) 3.4 (5.0) - -

¥
log(ft) after quenching is introduced to the strength.
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energies near the Fermi surface. Also the residual
interaction in our model is repulsive and pushes
the state up.

In conclusion, the nuclear response method
of Ref. 1 is applied to the B+ decay of 14544
with good agreement for the location of the lower
states. However, our model can not account for
the 4.50 MeV state. Also it gives the strength
which is almost 10 times too large even after
considering the well known quenching of the Gamow-
Teller operators by factors 3-4.9 One reason
can be that the response method includes only
the particle-hole interaction. The 4.50 MeV con-
figuration resembles more a two-particle state,
which has the opposite sign to the particle-hole
interaction. Another possible reason is that
we neglected the ground state correlations between
neutrons and protons by using TDA. This may have
considerable effect on the strength since the
forward reaction is highly forbidden as discussed

before. We are now extending the theory to include
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the ‘particle-particle interaction as well as the
RPA and we expect that this will lessen the dis-
agreements for the overall strength and the energy
of the highest strong state. ’
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Giant M1 States in Zr Isotopes Within the Simple Shell Model
H. Toki, D. Cha and G. Bertsch

Very recently Anantaraman et al. have per-
formed a (p,p’') experiment at E_ = 200 MeV on
the zr isotopes and found for the first time giant
Ml states in these nuclei.1 The facts that Ml
2OBPb and the above experi-
mental findings in 2Zr isotopes motivated us to
analyse the data with the simplest possible shell
model.z

states are not found in

We assume that 099/ 0orbit is completely
occupied by neutrons in zZr and 1.:35/2 orbit is
started to be filled by increasing the neutron
nubmer. The particle-hole interaction is further
taken to be zero-range. The calculated results
are compared with experiment in Table I. The
experimental excitation energies are reproduced
with 7_ = 370 MeV fn>. This value indicates
Vg = vo1' The calculated cross section shows
a slight increase with mass number due to the
a3/ - ds/z'1 admixture and there seems to be

a slight indication of this in the experiment.

The calculated cross section, whose absolute value
is obtained with reasonable assumptions on the
interaction strength and the distortions, seems
to need a factor of 2 quenching effect. This
value is reasonalbe as the quenching factor for
the magnétic strength in these nuclei.3

The newly observed M1 states are readily
reproduced in terms of the simple shell model.
The strength of the residual interaction and the
quenchin§ factor are both reasonable. Our present
study may suggest that in fact Ml states with
large M1l strength do exist in 2°8Pb but so far
they have not been detected due to the high level
density.

1. N. Anantaraman et al., Phys. Rev, Lett. 46
(1981) 1318. -

2. H. Toki, D. Cha and G. Bertsch, Phys. Rev.
(1981).

3. H. Toki and W. Weise, Phys. Lett. 97B (1980)
12.

Table I. Experimental and calculated results for the excitation energies and the cross sections at
8 = 4°. Calculated results with and without the residual interaction, ¥_ = 370 MevV fm® and
V0 = 0 Mev fm® respectively, are shown in the second and the third columfis.
Exp Vc = 370 Mev fm° T =0 Mev fm°
N Qg e T T T dg . d
E,(Mev) a%(mb/sr) E,(Mev) g&(mb/sr) E (MeV) a%(mb/st)
902, 8.90:0.15 2.8:0.3 8.9 5.9 6.2 5.9
8.8 10.2 2.8:0.3 8.9 6.3 6.2 5.9
92Zr
2.6 0.6 2.1 1.0
8.63+0.15 3.1+0,3 8.9 6.7 6.2 5.9
94Zr
3.1 1.1 2.1 2.0
8.9 7.2 6.1 5.9
96
ar 3.5 1.5 2.2 3.0
N
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Systematics of the ¢t Strength in Nuclei
G. Bertsch, D. Cha and H. Toki

The recent studies with the (p,n) reaction

at intermediate energies found systematically
Gamow-Teller states for nuclei A348.1 We tried

to correlate the new data with a simple theore-
tical model.2 Our model is based on the TDA and
the RPA using either Woods-Saxon or Skyrme Hartree-
Fock wave functions. We use a §-function inter-
action and adjust the interaction strength so

as to reproduce the main peak of the gt strength
“function. We apply also our model to the L=l
strength function.

We show in Table I the calculated results
for the Gamow~Teller states (J =1+) for several
nuclei. The use of the interaction strength
V. = 220 MeV fn’
enables us to reproduce the excitation energies
within about 1 Mev,
with the Skyrme Hartree-Fock wave functions.
Concerning the M1 strength, most of the strength
is in the state at high excitation but there remains

with the Woods-Saxon wave functions

We obtain similar results

20% of the total strength at low excitation,
which is in agreement with the experimental findings
in 48Ca and 90zr.
We consider the L=1 strength associated with

the spin flip process, because the gt interaction

is dominant in the (p,n) reaction at high energies.
Then we have the total spin states of J=0, 1

and 2. Our calculations show that the J=0 state

is highest in energy. While nearly all of the
strength is concentrated in a single state for

J=0 and 1, the strength is spread over several
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states for J=2. We propose a possible spin-experi-
ment to resolve the total spin J.

From this analysis, we extracted the inter-
action strength of vUT = 200 Mev Em3. This value
corresponds to the Landau parameter of g' = 0.56.
If the one-pion exchange is considered, the esti-
mated g' would be of the order of 0.6, which is
consistent with the general belief for this para-
meter.

Table I
Nucleus Highest j e(3jj -1, €5 "¢y E Eexp
< >

i8¢, £1/2 -0.2 6.0  10.3 10.4
90, 99,2 -0.1 6.2 9.7 8.7

965 99,2 5.1 6.1  15.1 13.7
12g, %2 0.6 5.9 9.7 9.5
114, P12 2.9 6.6  14.1 13.9
169y, hyy /o 6.2 6.2  16.5 15.5
208, 113/ 3.6 6.6  14.7 15.5
Table I. Gamow-Teller energies. ¢ (33 1) denotes

the excitation energy of the j,-3j5' state and
€3 -ej> the spin-orbit splitting.” The diagonalizead
energy E is compared with the experimental value

Eexp:

1. D.E, Bainum et al., Phys. Rev. Lett. 44 (1980)
1751; B.D. Anderson, et al., Phys. Rev. Lett.
45, (1980) 699; D.J. Horen, et al., Phys.
Lett. 958 (1980) 27.

2. G. Bertsch, D. Cha and H. Toki, Phys. Rev.
C24 (1981) 533.



Proximity to the rho Meson Condensation Threshold in Nuclei
H. Toki and J.R. Comfort*

Motivated by the sensitivity of the magnetic
form factgr;at large momen;um (the operator has
the form gxq) to the rho meson interaction strength,
we made a systematic study of the critical thre-
shold to the spin-isospin instab1lity driven by
either or both of the oxp and c-q correlations
in nuctei.l The particle-hole interaction has
the form2

Hon(@)
B (9)S),(a) )01,

where the first and the second terms are the one
pion (OPE) and two pion exchanges (TPE) in the
isovector channel, respectively. All the remaining
many~body correlations are introduced in the pheno-
menological Landau short-range interaction g'
and the tensor interaction h'. While g°*
to range between 0.5 and 0.7 in the units of
E"Z/mi at q = 0, h' is negligibly small.

This interaction is treated within the random

is believed

phase approximation and the appearence of the
zero energy solution of the RPA equation is used
for determination of the critical threshold.3
For example, we show in Fig. 1 the calculated
results for the critical g' at and below which
the spin-isospin instability is realized &s a
function of the strength of ‘the ;xa correlation
C .

p

wsux-ot-o82
“without Vay
[ 2z 3
%
9
32"
075
4
By /‘ 80z¢
05 /2 1
IGO
0.25|
1 2 3
Cp

Fig. 1. The critical value g' for J" = 1%
and 2 states in !0, “°Ca and ®°Zr as a function
of the rho mesion coupling strength Cp. The dashed
curve is obtained with V.= O for *°cCa.
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> AP ~ > A+ A + >
= (V (2)oy-d0y+a + V, (d)oyXdoyxq + 9" (d)oy 0yt

One sees that gé is‘nearly constant up to
C ~ 2.2-2.5 for different nuclei and then rises
rapidly after that. To elucidate the behavior,
calculations are also done for the 1¥ state of
4OCa with V“ = 0 and the results are shown as
the dashed line in Fig. 1. This behav1or of g
suggests the interesting Eact that the g» q correla-
tion caused by V" and the gxq correlation of V2n
neither interferenor cooperate very much in bringing
about the nuclear instability, even in nuclei

as small as 16

0. Thus, one can talk the pion
instability and rho meson instability separately
in nuclei.

%ince the full two pion exchange strength
as determined from empirical NN+2q data,4 cor-
responds to C_ ~ 2,8, although this value might
be somewhat reduced by the Pauli blocking, the
results suggest that the nuclear phase transition
is closer to the rho mesonic instability than
to the pionic instability. A further implication
of this would be that precritical phenomena would
be more pronounced in processes dominated by the
gxa interaction such as (e,e') reaction than in
the processes caused by the 3-& interaction such
as (p,p'), (m,y) reactions.

Because while our discussions depend on the
size of the Exa correlation strength in nuclei,
which is less explored, we need to make systematic
experimental studies on the high momentum properties

of nuclei in all mass regions.

+ Department of Physics and Astronomy, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260.
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