SECTION IV

ABSTRACTS OF PAPERS IN PRESS
Excitation of M1 resonances in 90Zr, 92Zr, 94Zr and 120Sn by inelastic scattering of 201 MeV protons.

C. Djalali, N. Marty, M. Morlet, A. Willis, J. C. Jourdain
Institut de Physique Nucléaire, 91406 Orsay (France)
N. Anantharaman, G. M. Crawley and A. Galonsky
Cyclotron Lab, Michigan State University, East Lansing MI, 48824

The location of M1 strength in others than light nuclei has been the subject of many discussions. Very recently inelastic electron scattering experiments have shown three small M1 components in 90Zr near 9 MeV excitation energy [1]. In contrast (pn) charge exchange experiments excite broad spin-flip isospin flip Gamow-Teller resonances [2]. This resonances are strongly enhanced when the energy of the projectile is increased from 45 to 160 MeV.

Taking advantage of the 201 MeV proton beam of the Orsay synchrocyclotron we have searched for these $\Delta T = 1, \Delta S = 1$ transitions in 90Zr, 92Zr, 94Zr and 120Sn. The experimental setup allows measurements at very small angles with an energy resolution of 60 to 80 keV. In the three Zr isotopes a resonance centered near 9 MeV is clearly seen (fig. 1 abc). In 120Sn a small bump centered at 8.3 MeV is superimposed on a large continuum due to the tail of the elastic peak (fig. 1d). The characteristics of these resonances are given in the table. Their angular distribution is forward peaked and is well fitted by a L = 0 DWBA angular distribution (fig. 2) as the (pn) GT resonances.

The strength exhausted by these M1 resonances will be discussed.

<table>
<thead>
<tr>
<th>Target</th>
<th>E_{res} (MeV)</th>
<th>γ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90Zr</td>
<td>8.75 ± 0.1</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>92Zr</td>
<td>8.75 ± 0.1</td>
<td>1.6 ± 0.1</td>
</tr>
<tr>
<td>94Zr</td>
<td>8.6 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>120Sn</td>
<td>8.3 ± 0.15</td>
<td>1.75 ± 0.15</td>
</tr>
</tbody>
</table>

(2) D. J. Horan et al. Phys. Let. 95B(1980) 27
INTERMEDIATE ENERGY HEAVY ION COLLISIONS

David K. SCOTT
National Superconducting Cyclotron Laboratory

and

Departments of Physics and Chemistry
Michigan State University
East Lansing, Michigan 48824, USA

Abstract: Intermediate energy nuclear collisions between 20 and 200 MeV/nucleon are discussed. Various transitional phenomena occur in this region which acts as a bridge between low energy and relativistic heavy-ion reactions. The change from mean field to hydrodynamical phenomena, the onset of the participant-spectator description, and of high multiplicity events are all likely to be accessible at intermediate energies. The study of heavy fragments in peripheral reactions to measure zero point motion, and of light particle emission to probe properties of the participant zone in more central collisions are discussed. Exotic aspects of explosion, entropy production, of phase transitions and of nuclei far from stability can also be investigated at intermediate energies.

1. Introduction

The subject of intermediate energy, heavy-ion collisions has so far enjoyed a symbiotic relationship with its low and high energy hosts, drawing liberally from both. The reasons are partly practical and partly philosophical. Largely as a result of developments in accelerator technology, the study of nuclear collisions has been concentrated on two decades of incident energy: from 1 to 20 MeV/nucleon by the numerous electrostatic and cyclotron accelerators throughout the world, and from 200 to 3600 MeV/nucleon by modifications to existing synchrotrons. By driving these accelerators to their high and low energy limits, some initial results in the intermediate energy regime from 20 to 200 MeV/nucleon are now available. In like fashion, the theoretical interpretations are mainly extrapolations of ideas developed at much lower and higher energies. However the major emphasis of the new accelerators coming into operation in the next few years will be on nuclear collisions at intermediate energies, which are now known to contain important transitional features. Within the span from 20 to 200 MeV/nucleon, several thresholds can be surpassed, for example at the sound velocity, the Fermi energy and the pion mass. Instead of a mean field description, one may find that the mean field path becomes short before nuclei lose their cohesiveness; hydrodynamic features may therefore come into play. From the perspective of general physics, the region is also very interesting because of the lack of relevant, small, characteristic parameters. The situation is neither classical nor quantal, neither in the one-body nor the two-body extreme, neither close to the adiabatic nor to the sudden approximation; the energy is neither so low that the interaction might be dominated by the mean field, nor so high that individual few nucleon collisions might make the major contribution. This paper will deal with our present knowledge of intermediate energy, heavy-ion collisions and their relation to phenomena at low and at relativistic energies.

EXTREME STATES IN NUCLEAR SYSTEMS

"Les extrêmes se touchent..."
L.-S. Mercier, Jateau de Paris

D.K. Scott
National Superconducting Cyclotron Laboratory
and
Departments of Physics and Chemistry
Michigan State University
East Lansing, Michigan 48824, USA

ABSTRACT: Extreme states in nuclear systems are discussed in terms of limiting phenomena. Eight limits are described, viz., of angular momentum, reaction mechanisms, nuclei, space and time, temperature, density and matter. These limits have become accessible mainly through collisions of heavy nuclei at incident energies ranging from a few MeV/nucleon up to energies of TeV/nucleon.

INTRODUCTION

It is probably no exaggeration to say that there are few, if any, extreme states in nuclear systems [1]. Rather there exist extreme points of view. Many of these are familiar and, indeed, have played a pivotal role in the development of nuclear science. For many years our ideas about nuclear reactions were dominated by compound and direct processes—extremes of time scale ranging from 10^{-16} to 10^{-23} sec. The coexistence of the shell and liquid drop models demonstrates the extremes of single particle and collective aspects. More recently we have seen both time-dependent Hartree-Fock and nuclear hydrodynamical theories applied with some success to the dynamics of nuclear collisions, although the two theories start from paradoxically opposing hypothesis, the extremes of infinite and zero mean free path of a nucleon in the nucleus, and the extremes of few and many particle collisions. There is, however, a danger in associating these extreme viewpoints with extreme states, just as there is a danger in associating God with singularities in the solution of differential equations. With improved mathematics the singularities sometimes disappear. Similarly with improved nuclear theory, the extreme viewpoints disappear: complete extended shell model calculations, for example, exhibit collective features. As expressed succinctly by L.-S. Mercier in Jateau de Paris, "Les extrêmes se touchent". But before the extremes meet, they

190
THE PULSE-HEIGHT CORRECTION TECHNIQUE
FOR IMPROVING І-RAY SPECTRA FROM COAXIAL GE DETECTORS

N. Hatazuma, H. Kanai, and W. S. McHarris
National Superconducting Cyclotron Laboratory and
Departments of Chemistry and Physics
Michigan State University
East Lansing, Michigan 48824, U.S.A.

Abstract:

We demonstrate that the pulse-height correction technique can be used for coaxial as well as planar Ge І-ray detectors. Pulses from the detectors are analyzed according to their rise-times, and an improved spectrum is obtained by correcting the incompleteness of charge collection, using the relation between rise-time and pulse-height defect. Geometrical effects in coaxial detectors require at least a three-parameter correlation, in which the rise-times of the pulses are analyzed for two time segments. We have been able to improve the energy resolution of neutron-damaged Ge detectors by more than 50% and their peak-to-Compton ratios by almost as much, all without significant loss in detector efficiency.

*On leave at Lawrence Berkeley Laboratory (Nuclear Science Division), Berkeley, Calif. 94720, U.S.A.
The distribution of one-hole strength in a large number of
motions has been studied both experimentally (see refs. 1 and
2) and theoretically (refs. 3 and 4). A broad
resonance has been observed near 4.7 MeV excitation en-
ergy. Two particle pickup reactions on the tin isotopes 125
appear to arise from pickup of one neutron from a
deep-lying orbit (8j1/2) and one from a valence orbit (7j1/2).
In order to gain further insight into these broad struc-
tures the (p, p') reaction was carried out on the even-even isotopes
of cadmium, via 110Cd, 110mCd, 112Cd using the
42 MeV proton beam from the Brookhaven 80 inch cyclotron. The tin
were detected at a position sensitive proportional counter
spectrometer using a scintillation detector. Triton spectra measured at a laboratory
angle of 20° are shown in Fig. 1. Broad structures in the spectra
appear to be somewhat more tilted and fragmented. Similar
features observed in the cadmium spectra in the appearance of a second broad peak at an even higher
excitation energy. This second peak is marked with an arrow in the spectra
for the 110Cd reaction. It is possible to resolve individual
events which have been previously reported. A using the
110mCd reaction and 110, 112Cd reactions (from the
UCSD) it is possible to resolve individual
levels which have been previously reported. A using the
110mCd reaction and 110, 112Cd reactions (from the
UCSD) it is possible to resolve individual

Abstract of Talks for Bormio and Hirschegg Conferences, Jan. 1982

Subthreshold Pion Production by Heavy Ions

Walter Benenson
Cyclotron Laboratory and Physics Department
Michigan State University
E. Lansing, MI 48824

The most recent data on pion production below the nucleon-nucleon threshold with heavy ions consist of an angular distribution at E/A = 138 MeV for 28\(^{\text{Ne}}\)+NaF. The data were taken at the LBL Bevalac by a MSU-LBL-Orsay-Tokyo collaboration. The results can be summarised as follows:

1) There is a very large \(\pi^-/\pi^+ \) ratio at 0\(^\circ\) indicating that cold charged projectile fragments still exist after the collision even at this low energy.

2) The angular distribution is isotropic in the center of mass frame, which may indicate a predominance of thermal production rather than first collision nucleon-nucleon production.

3) The magnitude of the cross section is in good agreement with previous work\(^1\) and is smaller than the full firebreak calculation\(^2\) with all composite particles and resonances as can be seen in the figure.

The amount and type of composite particles included affects the pion cross section very strongly because of the very strong temperature dependence. This can be seen on the figure by comparing firebreak calculations with and without a's, t's and He's. The curve labelled thermal comes from the model of Kapusta\(^3\) and the curve labelled Hecking\(^4\) is a first collision + thermal calculation.

This work supported in part by the U.S. N.S.F. under grant No. 78-22696.

\(^4\)P. Hecking, LBL-12671 and private communication.
Energy Dependence of Nuclear Matter Disassembly in Heavy Ion Collisions

National Superconducting Cyclotron Laboratory
Michigan State University, East Lansing, MI 48824

M.J. Murphy and T.J.H. Symons
Nuclear Science Division
Lawrence Berkeley Laboratory, Berkeley, CA 94720

R. Legrain
Centre d'Etudes Nucleaires, Saclay, France 91190

T.J. Majors
Sandia National Laboratories, Livermore, CA 94550

ABSTRACT

Measurements of light charged particle spectra from 208Pb+Au at 100 and 156 MeV/nucleon are compared with results for similar systems at 5, 13, 20, 42, 241, 393, and 800 MeV/nucleon. Spectra at each energy are fitted with a single moving source model to extract the temperatures and cross sections for protons and light nuclei in the intermediate rapidity region. The $^\alpha$/p production ratio decreases drastically with incident energy, whereas the $^\alpha$/p and d/p ratios are almost constant.

PACS: 25.70.e

An important concept in relativistic nuclear collisions concerns the formation of an excited, localized region of participant nucleons moving with a velocity intermediate between those of the projectile and target. In this letter we present a new approach to the study of this region over a wide range of incident energies through its disassembly into nucleons and light composite nuclei. The relative abundance of these emitted fragments as a function of temperature in the zone is characteristic of the detailed mechanism of its disassembly.\(^{3,4,5}\) Within a thermodynamic model temperature and relative numbers of nucleons and light nuclei are predicted to vary smoothly with incident energy, whereas a hydrodynamical model\(^6\) incorporating compression, could lead to a discontinuity in the temperature and a sudden decrease in the production of light composite nuclei as a function of incident energy. We report new measurements of p,d,t, and 4He energy spectra and angular distributions from 208Pb-induced reactions on a Au target at incident energies of 100 and 156 MeV/nucleon. Our results for production cross sections and temperatures, when combined with those extracted from previous measurements for 16O or 208Pb-induced reactions on heavy targets, give a consistent picture of an intermediate velocity source with a temperature that varies smoothly with incident energy. We also observe that the deuteron to proton ratio (d/p) is almost independent of energy whereas the 4He to proton ratio (4He/p) varies from 1.9 at 9 MeV/nucleon to 0.05 to 800 MeV/nucleon. These observations lend support to models that describe these reactions in terms of a localized, thermalized, expanding interaction zone.\(^{3,4,5}\)
Splitting of the Dipole and Spin-Dipole Excitations

Sam M. Austin
Cyclotron Laboratory and Department of Physics and Astronomy
Michigan State University, East Lansing, MI 48824

Dipole (L=1) transitions in a (p,n) reaction can be accompanied by spin transfer S=0 or S=1. The nature of these excitations is shown in Fig. 1. All S=0 strength is concentrated in a J''=1^- state located at E_0, while for S=1, there are states with J''=0^-, 1^-, 2^- with centroid at E_1. Near E_p = 40 MeV, S=0 transfer is dominant, but transfer of S=1 becomes more and more probable (relative to S=0) as the proton bombarding energy increases toward 200 MeV^1; one then expects the centroid of the L=1 strength to move from E_0 toward E_1 with increasing energy.

This behavior has been observed experimentally for all heavier (A>90) nuclei investigated, and is shown for the isotopes of Zr^{2,3} in Fig. 2.

The position of the L=1 centroid at bombarding energy E_p is given by

$$C(E_p) = \frac{\sigma_1 E_1 + \sigma_0 E_0}{\sigma_1 + \sigma_0} = E_0 + \frac{\sigma_1/\sigma_0}{1 + \sigma_1/\sigma_0} \Delta$$

(1)

where $\Delta \equiv E_0 - E_1$ and $\sigma_1(\sigma_0)$ is the cross section for S=1(S=0) transfer.

For the ratio σ_1/σ_0, we use the value found for L=0 transitions by Taddeucci, et al.,^1 namely $\sigma_1/\sigma_0 = a^2 E_p^2$ where $a = 0.00183 \pm 0.00018$ MeV^{-1}. (Our use of this value of a involves the assumption that the spin operator is quenched as it is for Gamow-Teller Transitions in heavier nuclei.) Then

$$C(E_p) = E_0 - \frac{a^2 E_p^2}{1 + a^2 E_p^2} \Delta$$

(2)

195
Observation of M1 strength in zirconium isotopes by proton inelastic scattering

G.M. Crawley, N. Anantaraman and A. Galonsky

National Superconducting Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824, USA

and

C. Djalali, N. Marty, N. Morlet, A. Willis, J.-C. Jourdain
and P. Kitching*

Institut de Physique Nucléaire
Orsay, France

Abstract

A broad resonance has been observed by inelastic scattering
of 200 MeV protons from 90Zr, 92Zr, 94Zr and 96Zr. This
resonance has a sharply forward peaked angular distribution
and an excitation energy and strength which strongly suggest
that it is the M1 giant resonance. Microscopic distorted
wave impulse approximation calculations match the shape
of the angular distribution reasonably well. The strength,
however, is only about 30% of that predicted.

I. INTRODUCTION

The study of M1 states in nuclei allows the exploration
of the nuclear spin degrees of freedom, which is interesting
for a number of reasons. The shell model predicts that
there should be M1 states ($I^+ = 1^+$ in even-even nuclei) made
when the spin of a particle in a j-ununsaturated shell is
flipped, i.e., $j-1/2 \rightarrow j-1/2$. The M1 strength is therefore
a measure of the extent to which unsaturated spin-orbit-
partner orbits are occupied in the nuclear ground state.
Secondly, the M1 strength gives a check on the renormalisation
(due to core polarization and mesonic effects) of the magnetic
charge (effective g-factors). This renormalisation, until
now, has been determined mainly from the study of magnetic
moments. Thirdly, in scattering experiments the M1 strength
allows, in principle, the determination of the spin-dependent
components of the effective interaction between the nucleons
in the projectile and the target. At small angles and at
bombarding energies above 100 MeV/nucleon, where the V_{11}
component is dominant, the strength should be particularly
sensitive to this component. Finally, since the one
pion exchange potential involves spin and isospin transfer
of one, and since the V_{11} operator involves spin flip and
isospin flip, the magnitude of this operator at large momentum
transfers is important in determining the pionic interactions
with nuclei and in particular whether or not a phase transition
to a pion condensed phase can take place.
Presented at the International Conference on Spin Excitations in Nuclei, Telluride, Colorado, March 25-27, 1982

OBSERVATION OF M1 STRENGTH IN MEDIUM-HEAVY NUCLEI

VIYa THE (p,p') REACTION

G.M. Crawley, N. Ananthanarayan and A. Galonsky
Cyclotron Lab, Michigan State University
East Lansing, MI 48824

and

C. Djalali, N. Matty, X. Mouchet, A. Willia, J.C. Jouclain and F. Kitching
Institut de Physique Nucléaire
Orsay, FRANCE

ABSTRACT

A broad resonance has been observed by inelastic scattering of
200 MeV protons from 16O, 18O, 19F, 19Ne, 20Ne, 21Ne, 22Ne, 23Na, 23Mg, 24Mg, 25Mg and 26Mg. The resonance occurs between 8 and 9 MeV in most of the nuclei and has a width of around 2 MeV. In all cases, the angular distribution is very sharply forward peaked and is consistent with an orbital angular momentum transfer of zero. The excitation energy, angular distribution and strength of the resonance suggest that it is the giant M1 resonance.

In the nickel isotopes, and in 18O, both the T=0 and T=1 components of the resonance are observed.

I. INTRODUCTION

The study of spin excitations in nuclei has been pursued by a number of different yet complementary techniques including electron scattering, (p,n) reactions, S-decay and, more recently, (p,n') (p,p'), (p,n') and (p,n) reactions. The program of this conference is proof of the richness and diversity of this field. Such studies are important for the understanding of the nuclear structure. The authors have stimulated renewed interest in this subject. In addition, improvements in the theoretical formulation of the effective interaction used in direct reaction calculations at high energy have resulted in the ability to predict the absolute magnitudes of the cross sections, confirm that magnetic transitions are substantially quenched. The quenching has apparently two components, one being configuration mixing and the other more exotic mesonic effects such as the mixing of the M1 state with a particle-nucleon hole configuration excited through the N-nucleon interaction.

In spite of the strong excitation of the G-T resonance in the (p,n) reaction, until last year there was no corresponding clear observation of the M1 state in the parent nucleus either by inelastic proton scattering or inelastic electron scattering. In nuclei heavier than the nickel isotopes, however, the (p,n) data did suggest to us that the appropriate kinematic region to search for the M1 state in (p,p') would be at high bombarding energies (1520 MeV) and at very forward angles. The (p,n) reaction to the G-T state is very forward peaked and the similarity of the reaction mechanism suggested a similar behaviour for the (p,p') reaction. Of course, the measurement of inelastic scattering cross sections at very forward angles is experimentally challenging, primarily because of the background from scattered particles and the Landau tail of the elastic peak.

II. EXPERIMENTAL METHOD

The experiments reported here were carried out using 201 MeV protons from the synchrocyclotron at the IPN, Orsay. The spectrometer attached to this facility is ideal for forward angle measurements because of its large size. In addition, a counter system consisting of two multiwire detectors and two plastic scintillators measures the trajectory of the particles emerging from the spectrometer. Such measurements serve to minimize the background from scattered particles. However, one problem with this counter was that it had small differential non-linearities which gave rise to spurious fine structure in the spectra. For this reason each spectrum was taken with two slightly different settings of the magnetic field to clearly identify any spurious structure. An example of such overlapping spectra is shown for 18O in Fig. 3a. In addition, since the fine structure was found to be very stable during a week long run, a correction function was obtained which could then be applied to all the spectra to further reduce the effect of the on-line non-linearities in the counter.

The absolute cross section was obtained in two ways. First, the cross section was measured by a comparison with the known p p scattering cross section and second, by a comparison with elastic scattering calculations at angles forward of 10°. The two methods agreed to better than 1%.
On the feasibility of axial injection in superconducting cyclotrons

G. Bellomo, D. Johnson, F. Marti and F.G. Resmini
National Superconducting Cyclotron Laboratory
Michigan State University, East Lansing, MI 48824

Abstract

In connection with the superconducting cyclotron program at M.S.U. a feasibility study of axial injection, aimed mainly at the K-800 cyclotron, has been carried out.

The results encompass all major aspects of a working system, i.e. center region, injection trajectories and phase space matching. It is shown that axial injection is indeed feasible, although problems exist not ordinarily encountered in conventional A.V.P. cyclotrons.

The possible solutions and limitations are presented and discussed in detail.
ANOMALONS AS PINEUTS BOUND TO NUCLEAR FRAGMENTS:
A POSSIBLE EXPLANATION

Wm. C. McHarris* and J. O. Rasmussen
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

Abstract:
We suggest that the properties of anomalons, the highly reactive heavy-ion reaction fragments observed in emulsions, can be explained by considering them to be "pineuts", i.e., a π- bound hadronically to a neutron cloud extending out from the nuclear fragment.

*On leave from National Superconducting Cyclotron Laboratory and Departments of Chemistry and Physics, Michigan State University, East Lansing, Mich. 48824, U.S.A.
Neutron Shielding Calculations for Phase II Operations of the National Superconducting Cyclotron Laboratory

National Superconducting Cyclotron Laboratory
Michigan State University
East Lansing, MI 48824
N1 EXCITATION OF NUCLEI BY INELASTIC PROTON SCATTERING

N. ANANTARAMAN, G.M. CRAMLEY and A. GALORSKY
National Superconducting Cyclotron Laboratory,
Michigan State University
East Lansing, Michigan 48824
and
C. DJALALI, N. MARTY, H. MORLET, A. WILLIS,
J.-C. JOURDAIN and P. KITCHEING
Institut de Physique Nucléaire
Orsay, France

Abstract

The giant N1 excitation has been observed in the inelastic scattering of 200-MeV protons from 23 medium-heavy nuclei between 40Ca and 140Ce. The N1 identification is based upon the excitation energies (between 8 and 9 MeV in most of the nuclei) and angular distributions (very forward peaked) of structures observed in the proton spectra. Microscopic distorted wave impulse approximation calculations match the shapes of the angular distributions quite well but predict cross sections about 4 times too large. Comparisons with (e,e') and (p,n) results are presented.
The nucleus ^{48}Ca has been a particularly interesting test case for the study of $^{1-0}$, spin-flip transitions mainly because of the simplicity of its structure. A strong sharp transition to a $^{1-}$ state has been observed with this target in a number of reactions. In the present experiment, 200 MeV protons from the Orsay synchrocyclotron were used to study the $^{48}\text{Ca}(p,p')$ reaction from 2$^\circ$ to 16$^\circ$. In the spectrum at 4$^\circ$ shown in the top panel of the figure, the 10.2 MeV, $^{1-}$ state stands out very clearly above the background. In contrast, by 10$^\circ$ many states are observed in the spectrum with comparable intensity. The angular distribution for this state is very sharply peaked and has been compared to microscopic distorted wave Born approximation calculations using the code DWBA70. Both a simple $\{\psi f_5/\sqrt{2}\}$ and a more realistic full f-p shell wave function have been used in these calculations. Both calculations reproduce the shape of the measured angular distribution reasonably well. The ratio of experimental to predicted cross sections for these two cases are 0.27 and 0.36 respectively. These values are somewhat lower than the ratio of experimental to theoretical RM1 values extracted from the (e,e') measurements.

In addition, it is interesting to observe the effect of adding protons to the $f_{7/2}$ shell keeping a neutron number of 28. Spectra for ^{50}Ti and ^{54}Fe are shown in the lower panels of the figure where the single sharp peak in ^{48}Ca has become a more widely spread cluster of levels. In ^{50}Ti, the states tend to cluster in two groups centered at energies near 10.2 MeV and a little below 9 MeV. It has been suggested that this lower energy cluster corresponds to proton excitations. These results agree with the (e,e') observations. In contrast, a broad feature is also observed in $^{51}\text{V}(p,p')$ in the present experiment but no corresponding strength was observed in the (e,e') measurements on this same nucleus.

* Work supported in part by NSF under grants PHY-78-22696 and INT-8116064.
Low energy particles produced in heavy ion reactions

O. Scholten, H. Kruse and W.A. Friedman
Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824

Abstract
A model is presented for the low energy spectrum of nucleons produced in small impact parameter heavy ion reactions. Special attention is paid to the effects of the Coulomb force which not only gives rise to an energy shift but also to a sideward focusing. Calculated angular distributions are compared with high multiplicity selected events in the Ne on U reaction at 393 MeV/nucleon.

PACS numbers: 25.70.Bc, 25.70.Fg
Isospin dependence of pion absorption by nucleon pairs

H. Toki and H. Sarafian
National Superconducting Cyclotron Laboratory
and Department of Physics-Astronomy
Michigan State University
East Lansing, Michigan 48824-1321

ABSTRACT

We calculate the relative absorption ratio of a pion by nucleon pairs measured recently by Ashery, et al. Standard theory based on Δ-isobar intermediate excitations agrees with the experimental observation that pion absorption by a \(T = 1 \) nucleon pair is strongly suppressed.
SHELL-MODEL CALCULATIONS OF NUCLEAR CHARGE RADIIS

J. B. McGrory
Oak Ridge National Laboratory*
Oak Ridge, Tennessee 37830, U.S.A.

B. A. Brown
Michigan State University,
East Lansing, Michigan 48824, U.S.A.

Abstract Shell-model calculations of charge radius differences in the Pb isotopes are discussed. Core quadrupole oscillations are found to be significant factors in the calculations. Existing data on the 210Pb isotope shift and the B(E2) strengths in 210Pb are shown to be inconsistent. Ground-state correlation effects in light nuclei (i.e., O and Ca isotopes) introduce odd-even staggering effects and other qualitative features in agreement with existing data.

INTRODUCTION

At this conference we have heard about a number of beautiful experiments which produce extremely precise measurements of nuclear sizes, as extracted from isotope shift measurements. An obvious question is what can we learn from such measurements. Historically, there are two distinct classes of nuclear models. One is the collective model, wherein the nucleus is treated as some sort of liquid which can assume a shape, rotate, vibrate, etc. Bill Myers has discussed here the application of such

LIQUID-GAS PHASE INSTABILITIES IN NUCLEAR SYSTEMS

H.W. Curtin, N. Toki, and D.K. Scott
National Superconducting Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824, USA

Abstract

The conventional approach to composite fragment production in heavy ion collisions from a single gaseous phase may require modification at temperatures below 20 MeV due to the onset of a liquid-gas phase instability. Clusters heavier than the n-particle are necessary for an unambiguous experimental signature.

PAC BOS. 25.70.Fg, 65.70.Jk, 24.90.+d

In high energy nuclear collisions, a localized zone of participant nucleons can be created at excitation energies greater than the binding energy of the nucleons. The disassembly of the hot transient system into many different final channels is a problem of current interest. Thermodynamic models have been developed to account for the emission of light composite fragments by treating the participant zone as a single gaseous phase in thermal and chemical equilibrium. However, under certain combinations of density and temperature the system may develop an instability toward division into liquid and gas phases which could influence the production of composite fragments. In this paper we discuss the conditions for this instability to develop and we suggest how this effect might be observed experimentally.

To derive the condition for a liquid-gas instability, we start from the relation

$$\sigma = \frac{4}{(2\pi)^2} \int d^3k \left[1 + \exp \left(\frac{k^2}{2\mathcal{E}} - \mu \right) \right]^{-1}$$

from which the chemical potential, \(\mu\), is determined as a function of the density \(\sigma\) and the temperature \(T\). The thermal contribution to the internal energy is given by

$$\frac{E_{\text{th}}}{\tilde{\nu}} = \frac{4}{(2\pi)^2} \int d^3k \left[1 + \exp \left(\frac{k^2}{2\mathcal{E}} - \mu \right) \right]^{-1}$$
Gamow-Teller strength at high excitations

G.P. Bertsch and I. Hamaoko
Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824

Abstract

A perturbative calculation is reported for the mixing of Gamow-Teller strength with 2-particle 2-hole configurations at high excitation energies. We find that roughly 50% of the Gamow-Teller strength is shifted into the region of 10-45 MeV excitation for the nucleus 96Zr. This would explain a substantial part of the continuum background seen in the 200 MeV (p,n) reaction.

[Nuclear Structure, 96Zr, Gamow-Teller strength function, E_{ex}]

[10-45 MeV, Theory]

*also at NORISY, Copenhagen

Address after September, 1982: Department of Mathematical Physics
Lunds Institute of Technology
University of Lund
S-22007 Lund 7, Sweden

The recent elucidation of the giant Gamow-Teller state in heavy nuclei by the (p,n) reactions presents a paradox. There is a well-defined peak whose energetics is reproduced by the TWA shell model theory, but the strength is apparently less than half of the predicted value. Part of the suppression can be ascribed to the A-isobar admixtures in the nuclear wave functions, but part is undoubtedly due to conventional nuclear mixing. For example, in the case of 95Sn, Towner and Khamma found that more strength was depleted by ordinary nuclear configuration mixing than by the A amplitudes in the wave functions.

In this article, we will examine in some detail the distribution of strength that is lost to the Gamow-Teller peak due to configuration mixing. Our motivation is the presence of excitation strength in the (p,n) reaction at 0°, for excitation energies ranging up to 50 MeV above the Gamow-Teller peak. We anticipate that much of this excitation strength is due to Gamow-Teller strength for the following reasons. The main other possibilities are multistep excitation, and excitation by operators with orbital dependence, e.g., $(\lambda, j)_{\text{mix}}$. Multistep reaction cross sections characteristically rise with increasing excitation energy, due to the greater number of intermediate states possible for higher energy ions. However, the (p,n) reaction cross section falls with energy loss up to excitation energies beyond 50 MeV. This is clearly seen in the data of Gaarde, et al., which we reproduce in Fig. 1. Furthermore, explicit calculation of multistep reaction cross sections indicates that single step should dominate at forward angles when the excitation energy is less than half the beam.
DAMPING OF NUCLEAR EXCITATIONS

G.F. Bertsch
National Superconducting Cyclotron Laboratory
and Department of Physics
Michigan State University
East Lansing, Michigan 48824

and

P.F. Bortignon
University of Padova, Istituto di Fisica Galileo Galilei,
Padova; and INFN, L.N. Legnaro, Italy

and

R.A. Broglia
The Niels Bohr Institute
University of Copenhagen
DK-2100 Copenhagen Ø, Denmark
Intrinsic Fragment Spins Generated in the Reactions of 20Ne with 197Au and 238U at 12.6 MeV/Nucleon

D. J. Morrissey,* G. J. Wozniak, L. G. Sobotka, A. J. Pacheco,* R. J. McDonald, C. C. Hsu* and L. G. Moretto

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

The average magnitude and alignment of the intrinsic spin of the heavy partner from the reaction of 252 MeV 20Ne with 197Au and 238U were determined as a function of Q-value. These spin values were extracted from sequential fission angular distributions obtained in coincidence with projectile-like products. For all Q-values, a large out-of-plane anisotropy was observed, while for large negative Q-values an in-plane anisotropy was observed. A very large entrance-channel mass-asymmetry was chosen to provide a stringent test of equilibrium statistical model predictions for the spin alignment. The importance of determining the direction of the line-of-centers of the dinuclear system at scission is discussed. Large values of P_{zz} were deduced for all Q-values. P_{xy} was observed to be positive in the quasielastic region and negative in the deep-inelastic region. The extracted alignment data are compared to equilibrium statistical model calculations.

*Permanent address: Dept. of Chemistry and National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Michigan, 48824.
*Permanent address: Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Permanent address: Institute of Atomic Energy, Beijing, China.
Theoretical interpretation of the Gamow-Teller strength in the \(^{42}\text{Ca}(p,n)^{42}\text{Sc} \) reaction

H. Toki and G.F. Bertsch
National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy
Michigan State University
East Lansing, Michigan 48824

Abstract

We have calculated the Gamow-Teller strength of the \(^{42}\text{Ca}(p,n)^{42}\text{Sc}(1^+) \) reaction using the Kuo-Brown wave function. This shell model calculation together with the \(\Delta \) isobar quenching mechanism accounts for the GT strength.

[Nuclear Structure, Shell-Model, Reaction Matrix, GT-strength, \(\Delta \) isobar Polarization]
Relations among the quenching strengths of magnetic transitions
due to the Δ isobar excitation in $N \neq Z$ nuclei

Hiroshi Toki
National Superconducting Cyclotron Laboratory
and Department of Physics and Astronomy
Michigan State University, East Lansing, Michigan 48824

Abstract
A possible excitation scheme of particle-hole states in $N \neq Z$
nuclei is worked out within the isospin formalism. Particle-hole
states with a definite isospin are decomposed into $1p - 1h$ (particle-
hole), $2p - 2h$ and $3p - 3h$ states. This decomposition enables us to
relate transition strengths from the ground state to the excited
states and those in the adjacent nuclei. The same thing is done
for Δ isobar-hole states. Using these results, we obtain the
relations among the quenching strengths of magnetic transitions in
$N \neq Z$ nuclei. In particular, we apply these relations to the M1
states around 48Ca and 96Zr and compare the results with experimental
data obtained by (p,n), (p,p') and (e,e') experiments on 48Ca and
96Zr.
RGM Kernels for the 9-quark 3-nucleon system

Y. Suzuki* and K.T. Hecht

Physics Department, University of Michigan
Ann Arbor, Michigan 48109, USA

H. Toki

National Superconducting Cyclotron Laboratory, and Department of Physics
& Astronomy, Michigan State University
East Lansing, Michigan 48824, USA

The RGM norm kernel for the 9-quark 3-baryon system is evaluated in
analytic form. The space-symmetry content of the RGM wave function of the
NNN system is given in a form which makes it possible to include NNN, ΔΔΔ,
and hidden color states. The norm kernel is used to investigate the role
of quark Pauli effects on the central density of ³He.

*Wishima Memorial Foundation Fellow, on leave of absence from Physics
Department, Niigata University, Niigata 950-21, Japan.
†Work supported by the U.S. National Science Foundation.
To be published in Phys. Rev. C

Do quark Pauli effects account for the central depression in the \(^3\)He density?

H. Toki

Cyclotron Laboratory, Michigan State University
East Lansing, Michigan 48824

Y. Suzuki* and K.T. Hecht

Physics Department, University of Michigan
Ann Arbor, Michigan 48109

Analytic expressions for the BCM norm kernel of the 9-quark NNN system make it possible to examine the role of Pauli effects among quarks. The conclusion is that Pauli effects alone do not account for the central dip in the \(^3\)He density.

[NUCLEAR STRUCTURE 9-quark model of \(^3\)He]
Microscopic Calculation of the Parameters of the Interacting Bose-Fermi Approximation for Nondegenerate Orbits

by

O. Scholten*
Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824

and

S. Pittel**
Bartol Research Foundation of The Franklin Institute
University of Delaware, Newark, Delaware 19711

Abstract

Microscopic calculations of the parameters of the quadrupole operator of the Interacting Bose-Fermi Approximation are reported for the realistic case in which the valence orbits are nondegenerate. The results of these exact calculations are compared with those of an approximate formalism and in general reasonable agreement is found.

* Work supported in part by National Science Foundation - Grant No. PHY-8017605.

** Work supported in part by National Science Foundation - Grant No. PHY-8015342.
Gamow-Teller strength in the continuum

O. Scholten, G.F. Bertsch and H. Toki
Department of Physics-Astronomy
and Cyclotron Laboratory
Michigan State University
East Lansing, Michigan 48824

Abstract

We present the results of a decomposition of the angular
distribution of the continuum observed in the $^{90}Zr(p,n)$ reaction
at 200 MeV into different angular momentum transfers. We found
significant amounts of $L=0$ strength over a wide range of excitation
energies in the continuum, which sums up to more than
half of the missing GT strength.
The effective quadrupole force between like IBA-bosons

Olaf Scholten

Department of Physics-Astronomy and
National Superconducting Cyclotron Laboratory
Michigan State University
East Lansing, MI 48824-1321

In the Interacting Boson Approximation\(^1\) (IBA) model the structure of even-even nuclei is described in terms of a system of interacting s- and d-bosons. A boson is regarded as a collective pair of two neutrons or two protons. From the spectra of semi-closed shell nuclei there is strong evidence that there is no, or at most a very weak, quadrupole force between like particles\(^2\) and consequently no quadrupole force between like bosons. It is the strong neutron-proton quadrupole-quadrupole force that gives rise to the collective features of the spectra of medium heavy and heavy nuclei that have both valence neutrons and protons. In a recent paper, however, Dieperink and Bijker,\(^3\) give strong evidence, on phenomenologic grounds, for a strong quadrupole force between like bosons in nuclei where the SU(3) or O(6) limits of the IBA model apply. In this letter it will be shown that this paradox can be resolved by considering the effective interaction which arises from the truncation of the full shell model space to the S-D pair subspace\(^4\) which corresponds to the IBA boson space.

The consequence of the space truncation has been considered by Sage and Barrett,\(^5\) where the effects of the G-pair are studied in a perturbative approach. The G-pair state is a collective \(v = 2, J = 4\) state and is obviously outside the S-D fermion pair space. A parameter of the IBA-model that has been considered in Ref. 5

216
NEUTRON-HOLE STRENGTH DISTRIBUTIONS IN HEAVY NUCLEI.

S. Calés
Institut de Physique Nucléaire, EP n°1, 91406 Orsay, France

G.M. Crawley, D. Weber and B. Zwieginski

IPNC-DEE-82-06
Beta-Decay Half-lives of Isotopes Produced in Projectile Fragmentation

M.J. Murphy, T.J.M. Symons, and G.D. Westfall
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

and

H.J. Crawford
Space Sciences Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

Beta-decay half-lives have been measured for eight neutron-rich isotopes produced in the fragmentation of 11.4 GeV 40Ar on 9Be. The experiment used a new measurement technique designed to observe very short half-lives. The previously unknown half-lives of 22O (910 ± 350 ms) and 32Al (35 ± 5) have been obtained, as well as six known half-lives to provide a check of the procedure.

+ Present address: Cyclotron Laboratory
Michigan State University
East Lansing, MI 48824

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
\((p,n) \) Reactions on \(^{13}\)C, \(^{14}\)C, and \(^{14}\)N and

The Effective Nucleon-Nucleon Interaction

T. N. Taddeucci\(^{(a)}\), R. R. Doering\(^{(b)}\), and L. C. Dennis\(^{(c)}\)

Department of Physics, University of Virginia
Charlottesville, Virginia 22901

Aaron Galonsky, S. M. Austin, and W. A. Sterrenburg\(^{(d)}\)

Cyclotron Laboratory, Michigan State University
East Lansing, Michigan 48824

\(^{(a)}\)Present address: Indiana University Cyclotron Facility, Milo B. Sampson Lane, Bloomington, Indiana 47401.

\(^{(b)}\)Present address: Texas Instruments, Inc., Mail Station 631, P. O. Box 1444, Houston, Texas 77001.

\(^{(c)}\)Present address: Physics Department, Florida State University, Tallahassee, Florida 32306.

\(^{(d)}\)Present Address: K.V.I., Groningen, The Netherlands
To be published in Nuclear Physics A

SYSTEMATICS OF THE EXCITATION OF M1 RESONANCES IN MEDIUM

HEAVY NUCLEI BY 200 MeV PROTON INELASTIC SCATTERING

C. Djalali, N. Marty, M. Morlet, A. Willis and J.C. Jourdain,
Institut de Physique Nucléaire, B.P. n°1, 91406 Orsay, France

N. Anantaraman, G.M. Crawley and A. Galonsky,
Nat. Superconducting Cyclotron Lab., Michigan State Univ.,
East Lansing, Michigan 48824, U.S.A.

and P. Kitching,
I.P.N. Orsay and University of Alberta, Edmonton, Canada.

Abstract

In a series of seventeen nuclei ranging from 51V to 140Ce broad resonance structures are observed at energies between 8 and 10 MeV, nearly mass independent. These resonances have very forward peaked angular distributions which imply that they are populated by an angular momentum transfer of zero. This together with the observed excitation energies suggests an M1 character for these resonances. In 51V, 58Ni, 60Ni, 62Ni, a sharp peak located at an excitation energy above the threshold for neutron emission is interpreted as a part of the T_{0+1} component of the M1 resonance. Cross sections are given for all the M1 resonances. For 58Ni, 90Zr, 120Sn and 140Ce, an "attenuation" factor for the cross sections is extracted in a DWIA calculation assuming a simple shell model structure for these resonances.

Nuclear reactions: 51V, 58Ni, 60Ni, 62Ni, 68Zn, 90Zr, 92Zr, 94Zr, 96Zr, 100Mo, 120Sn, 124Sn, 140Ce(p, p'), E_p = 200 MeV:
measured E_k, σ(θ) for M1 resonances. DWIA calculations.
Two major areas were discussed: (1) The creation of the light (A<12) elements and (2) The nature of the processes and sources that produce the galactic cosmic rays (GCR). In addition, techniques for measuring spallation cross sections were reviewed. Some more details:

1) Creation of the light elements

A simple picture of light element creation is consistent with the available abundance of these elements (known, except for \(^4\text{He}\), to within about a factor of two). \(^6\text{Li}\), \(^9\text{Be}\) and \(^{10,11}\text{B}\) are produced by galactic cosmic ray bombardment of the interstellar medium. (To reproduce the abundance ratio \(^{11}\text{B}/^{10}\text{B}\) apparently requires additional production of \(^{11}\text{B}\), perhaps by a flux of so far unobserved low energy cosmic rays). Only about 15% of the observed \(^7\text{Li}\) is produced in this way and a negligible fraction of \(^2\text{H},^3\text{He}\) and \(^4\text{He}\). These isotopes, however, are produced naturally by the big bang at a density corresponding to a present value of about \(5\times10^{-31}\text{g/cm}^3\). This density implies that the Universe is not closed by baryons as one could also conclude from virial theorem estimates of the masses of small groups of galaxies. Other implications were presented by Dave Schramm.

2) The nature of the GCR process and sources

Recently, measurements of the isotopic composition of the GCR have become available up through mass 30. For example,
Submitted to Nulcear Physics

Nucleon Scattering from Light Nuclei

I. The Targets ^6Li and ^7Li

F. Petrovich
Department of Physics, Florida State University
Tallahassee, Florida 32306

R. H. Howell and C. H. Poppe
Lawrence Livermore Laboratory
Livermore, California 94550

S. M. Austin and G. M. Crawley
Cyclotron Laboratory, Michigan State University
East Lansing, Michigan 48823

Abstract

New data for the elastic and inelastic scattering of 24.4-MeV protons from ^6Li and ^7Li are presented and a summary of all the available data for the elastic, inelastic, and charge exchange scattering of 24-50 MeV protons from these same targets is given. The cross section data for $E_p = 25$ and 50 MeV are examined theoretically within the framework of the microscopic folding model and the distorted wave approximation. Standard p-shell wave functions, supplemented by renormalization factors deduced from electromagnetic and β-decay data, are used to describe the target nuclei in these calculations. Results obtained using a phenomenological 1-fm range Yukawa interaction provide information on proton-neutron differences in the quadrupole transitions in ^7Li and differences in the energy dependence of the spin-flip and non-spin-flip isovector central components of the effective interaction. Results obtained with the more realistic G matrix interaction of Bertsch et al. give a reasonable description of the overall features of the experimental data after 20-60%
Submitted to NIM

Techniques for Measuring Neutron Scattering Cross Sections
With a Beam Swinger

R.P. DeVito\textsuperscript{a)), Sam H. Austin, U.E.P. Bergb), W. Sterrenburgc), and L.E. Youngd)

Cyclotron Laboratory and Department of Physics and Astronomy
Michigan State University, East Lansing, MI 48824, U.S.A.

Abstract

Techniques have been developed for measuring neutron elastic and inelastic scattering cross sections using a beam swinger based time-of-flight system. The use of the beam swinger has significant advantages at high neutron energies because of the simplification of shielding arrangements and the possibility of using long flight paths to obtain high resolution. Applications have been made to neutron scattering at 30.3 and 40 MeV.

a) Present Address: Indiana University Cyclotron Facility Sampson Lane, Bloomington, IN 47405, U.S.A.
b) Present Address: Institut für Kernphysik, Justus Liebig Universität, 6300 Giessen, West Germany
c) Present Address: KVI, University of Groningen (Paddepoel), The Netherlands
d) Present Address: Jet Propulsion Laboratory, Pasadena, CA 91103, U.S.A.
1. Introduction

My feelings—and probably yours—at this point are very much like that of the would-be water skier in Fig. 1. He is keen to race off towards the exciting prospects ahead, but at the same time has a sinking feeling at the sheer magnitude and inertia of the driving force. We also should race back to our laboratories to tackle the enormous range of research possibilities we have heard about, but here too the extent is almost overwhelming. For our conference has truly been a massive one. It was also an epic occasion by narrating the heroic exploits in nuclear and atomic physics, in nuclear structure and reactions, in pure and applied aspects, in dealing with some old, but unsolved, problems as well as tackling some of the very latest developments in theory and experiment. These themes of the Conference remind me a little of Romania. On my first night here in Magurele, I observed a striking contrast. Motionless under the stark new

European Physical Society Conference on Nuclear and Atomic Physics with Heavy Ions (Bucharest, Romania, June 1981): Prepared from tape transcript.
Isovector E2 Matrix Elements from Electromagnetic
Transitions in the s-d Shell:
Experiment and Shell-Model Calculations

B.A. Brown
Nuclear Physics Laboratory, Oxford University
Oxford, England OX1 3RH

and

Cyclotron Laboratory, Michigan State University*
East Lansing, MI 48824-1321

B.R. Wildenthal and W. Chung
Cyclotron Laboratory, Michigan State University
East Lansing, MI 48824-1321

S.E. Massen
Nuclear Physics Laboratory, Oxford University
Oxford, England OX1 3RH

and

Department of Theoretical Physics*
University of Thessaloniki
Thessaloniki, Greece
H. Bernas
Institut de Physique Nucléaire
Orsay, France 91406

A.M. Bernstein and B. Hiskimen
Physics Department and Laboratory for Nuclear Science
Massachusetts Institute of Technology
Cambridge, MA 02139

and

V.R. Brown and V.A. Radsen
Lawrence Livermore National Laboratory
Livermore, CA 94550

NUCLEAR STRUCTURE: 17 ≤ A ≤ 39 nuclei; comparison of experimental E2
isovector matrix elements with shell-model predictions; extraction of
the isovector effective charge; full basis 0\(\text{5f}_{2}\) = 0\(\text{5f}_{2}\) = 0\(\text{5f}_{2}\)
shell-model wavefunctions; Chung-Wildenthal-Hamiltonians.

ABSTRACT

All available B(E2) values in the mass region 8 ≤ A, N ≤ 20
relevant to the isovector electric quadrupole operator are compared to
the theoretical B(E2) values based on Chung-Wildenthal
0\(\text{5f}_{2}\) = 0\(\text{5f}_{2}\) = 0\(\text{5f}_{2}\) shell-model wavefunctions with harmonic oscillator
Thomas wavefunctions, and some selected cases are compared with local
and energy dependent Woods-Saxon potential wavefunctions. The empirical
effective charges deduced from these comparisons are insensitive to
differences in mass, state and dominant single-nucleon orbit. The value
for the effective charge parameter \(e_{p}^{-}\) extracted in the harmonic
oscillator approximation is consistent with 1.0. The values extracted
with local and energy-dependent Woods-Saxon potentials, which are more
meaningfully related to the underlying structure of the isovector
nuclearity, are consistent with 0.7e and 0.6e respectively. Some
inadequacies in the experimental data and theoretical models are
discussed and improvements are suggested.

225