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During the last decade, evidence has been mounting that nuclear matter undergoes a phase
transition in the nuclear fragmentation process. From general consideration regarding the elementary
nucleon-nucleon interaction (repulsive at short and attractive at intermediate distances), we expect the
nuclear phase-diagram to show a Van-der-Waals ‘‘liquid-gas’’ phase transition of first order, terminating
in a second-order transition at the critical point.

If one wants to gain a fundamental understanding of the fragmentation process that goes beyond
simple equilibrium model descriptions of the phenomena, then a proper description of the origin and time
evolution of fluctuations is essential, in particular if one wants to understand why particular molecular
dynamics codes produce fragments (or not!), and what their connections to the fundamental processes of
nuclear fragmentation are.

In this light, the recent findings of Moretto et al. are all the more surprising [1]. This group found
that the probability Pn of emitting n intermediate mass fragments (IMFs) follows a binomial distribution

Pn(m; p) =
m!

n! (m� n)!
pn(1� p)m�n (1)

The parameters m and p are related to the average and variance of the distribution.
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nPn(m; p) = m � p (2)
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(n � hni)2 Pn(m; p) = mp (1� p) (3)

This result suggest that one may interpret the parameter p as the elementary probability for the emission
of one fragment and the parameter m as the total number of tries. This would indicate that the problem of
multi-fragment emission is reducible to that of multiple one-fragment emission. The claim for reducibility
and its interpretation as the consequence of a simple barrier penetration phenomenon was further
strengthened by the observation that ln(p�1) has a linear dependence on 1=

p
Et, where Et is the total

transverse energy, Et =
P

l
Ekl sin

2 �l. Finally, the same scaling was found for different beam energies and
different projectile-target combinations.

Here we show that these observed patterns arise quite naturally from two main effects [2]:

� The finite size (charge) of the emitting system limits the fluctuations in the number distribution of
intermediate-mass fragments stronger than it does the average. Thus, even if IMFs would be emitted
with a Poissonian probability distribution in a infinite system, the probability distribution in a finite
system will be sub-Poissonian and can be fit by a binomial distribution. How far away from the
Poissonian limit the distribution is depends primarily on the size of the emitting system.



� There is a direct correlation between the number of detected charges in an event (= size of the
emitting system) and the total transverse energy. This is true for practically all detection systems,
even the ones that employ 4� solid angle coverage.

We begin our study by generating power-law distributed random fragmentation events. This is
accomplished by determining the charge of individual fragments with a probability distribution propor-
tional to Z�� , where Z is the fragment charge, and � is the power-law exponent. For definiteness, we
wish to generate events with exactly Zsys charges. If an event has less than Zsys charges, we add another
fragment; if it has more than Zsys charges, we throw it out. For an infinite system, we would expect the
multiplicity distributions for individual fragments of a given Z to follow a Poisson distribution. However,
as mentioned above, for finite systems the probability distributions for individual IMFs and for all IMFs
are better fit by binomial distributions.

What is the dependence of Zsys on the transverse energy, Et, in the experiments of Moretto et al.?
The dominant feature is the linear rise of the mean value of Zsys with Et,

hZsys(Et)i � 2 + 0:092 Et=MeV (4)

for values of Et less than 0.7 GeV, and the saturation of Zsys for larger values.
The width of the Zsys(ET )-distribution is significant, on the order of 10 units of charge. If we

wish to construct the probability distributions of intermediate mass fragments by using our knowledge
of the dependence of the binomial parameters p and m on the system size, and the dependence of the
system size on transverse energy, we have to integrate over the experimentally measured width of the
Zsys(ET )-distribution.

The outcome of this procedure is a (nearly) monotonic dependence of the extracted binomial
parameter p on Et. In fact, to very good approximation, a plot of ln p�1 vs. 1=

p
Et shows an approximately

linear rise. This, however, is not the consequence of some kind of thermal scaling. Instead, it is purely a
consequence of the variation of the size of the emitting system as a function of the transverse energy, and
with it a change in the effective parameter p in the binomial probability distribution.

We can obtain more-or-less complete agreement with the experimental data, if we allow the
power-law parameter � for the fragment mass distribution to vary with impact parameter and with beam
energy. This variation is a well-documented experimental fact [3,4] the experimentally observed value of
� increases with impact parameter and therefore falls with transverse energy. If we assume

� (Et) = 3:5� Et=(0:5 GeV) ; (5)

then we get the result displayed in fig. 1.
Our calculations are represented by the plot symbols. The error bars are statistical and computed

on the basis of 2� 104 events for each point. The solid line is a fit to the experimental results of Moretto
et al. As one can see, there is very good agreement. Assuming other functional dependences of � of Et may
even yield better results. This agreement, however, is not quite as relevant as the main message we wish
to impress on the reader: The universal scaling of lnp�1 vs. 1=

p
Et is almost exclusively due to the finite

size of the system emitting the fragments and the dependence of the measured value of the transverse
energy on that size.

Even though the main message of the present note is that the Et-dependence of the extracted
binomial parameters of the fragment multiplicity distributions can be explained rather straightforwardly,
we do not wish to convey the message that there is no interesting information that one can extract from
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this type of analysis. For instance, the effects of varying system size could be eliminated with utilization
of completely reconstructed fragmentation events. For these types of events, percolation models predict
a transition between sub- and super-Poissonian fluctuations near the percolation threshold. This type of
behavior is not expected in a sequential model. Once the kind of correlations discussed by us above are
removed, then this type of fluctuations analysis should yield insightful information about the character of
the nuclear fragmentation phase transition.

Figure 1: Dependence of the binomial parameter p of the IMF distribution on the transverse energy, assuming
that the e�ective power � of the fragment probability increases linearly with transverse energy. Plot symbols with
error bars represent our calculations, the solid line is a �t to the experimental data of Moretto and collaborators.
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