MEASUREMENT OF PARENTAGE IN STRIPPING REACTIONS OF HALO NUCLEI

Abstract
Recent experiments performed using the S800 spectrograph at the National Superconducting Cyclotron Laboratory have shed a new light on techniques to measure the valence wave function of halo nuclei. The momentum of the heavy fragment resulting from the stripping of the halo particle is measured by the spectrograph, and its final excited state is measured by means of a NaI γ-detector array located around the target. The large angular and momentum acceptances of the S800 provide a measurement of the full momentum vector. The analysis of the shape of the momentum distributions corresponding to different core fragment final states distinguishes between core excitations coming from reactions where a particle from the core - rather than the halo - is removed in the reaction, and components of the halo wave function where the halo particle is coupled to an excited state of the core.

Introduction
Stripping reactions of valence particles in halo nuclei may be a way to probe the spacial extent of their wave functions. Typically, the momentum distribution of the remaining core is measured at forward angles, and interpreted as the Fourier transform of the spacial wave function, with the appropriate core absorption effects taken into account. However, a careful comparison with calculations shows that discrepancies occur in the tails of the distributions, which suggests that the core is not merely a spectator of the reaction, but might also play an active role in the reaction (1). The detection of γ-rays in coincidence with the core fragments provides an identification of the reaction process and of the different components of the valence wave function. The momentum distributions corresponding to nucleons removed from different orbits and different core fragment final states will exhibit different shapes, and from the absolute calibrations of both the cross sections and the γ-rays array efficiency, as well as an appropriate reaction model, spectroscopic factors can be deduced. For example in the case of ¹¹Be, the ground state wave function of the valence neutron is known to be predominantly s-wave but may have some d-wave coupled to the 2⁺ state of ¹⁰Be. The ground state wave function also has 4 neutrons in the 0p₃/2 shell and removal of these neutrons produces a hole state in ¹⁰Be, either a 1⁻ or 2⁻ at around 6 MeV. In this contribution, we show that the measured core recoil momenta in coincidence with different final states of the core is consistent with this picture.

Two test cases: ¹¹Be and ¹⁵C
Both ¹¹Be and ¹⁵C are interesting to study because they are known to have a dominant s-wave component in their ground state wave functions (2,3), but rather different binding energies (0.5 MeV and 1.2 MeV respectively). Fig. 1 shows the momentum distributions of the ¹⁰Be core fragments after the breakup of ¹¹Be on a CH₂ target. The losange distribution is gated on the Doppler corrected 3.37 MeV 2⁺→0⁺ transition in ¹⁰Be. The dotted line is an l=0 Hankel wave function calculation [4] and clearly doesn’t account for the total distribution, especially in the tails. In the inset the difference between the total distribution and the one gated on the γ-ray (multiplied by 16 to account for the efficiency) is in much better agreement with the calculation. One possible interpretation of this result is that a neutron from the ¹⁰Be core rather than the halo is removed in the reaction. In that case the neutron is removed from the 0p₃/2 shell, which means that the shape of the momentum distribution...
should that of a p-wave. On the other hand, the excited 10Be core could result from a parentage to its 2^+ in the wave function of 11Be. In this case however, because the ground state of 11Be is $1/2^+$, the parentage would be 10Be$^+ \otimes 0d_{5/2}$ and one would expect to observe a d-wave for the gated momentum distribution. Fig. 2 shows the data compared to the two calculations, which indicates that these events come from reactions where a neutron is removed from the 10Be core rather than the halo.

A similar situation occurs in 15C, where the observed γ-ray at 6.09 MeV corresponds to the $1^- \rightarrow 0^+$ transition in 14C. In the case of a neutron removal from the 14C core, this neutron would have been in the $0p_{1/2}$ shell, whereas a contribution from a parentage to the 1^- state in 14C in the wave function of 15C would lead to 14C$^+ \otimes 1s_{1/2}$ and/or 14C$^+ \otimes 0d_{5/2}$ configurations. Fig. 3 shows the data with the $l=0$ Hankel wave function calculation, as well as the p-wave corresponding to the removal of a neutron from the 14C core. The results obtained on these two nuclei (11Be and 15C) indicate that knockout reactions where a neutron is removed from the core are not uncommon, and have to be taken into account for a precise analysis of the momentum distributions.

FIGURE 1. Momentum distributions of 10Be after the breakup of 11Be on a CH$_2$ target. See text for details.

FIGURE 2. Momentum distribution of 10Be gated on the 3.37 MeV γ-ray. The calculations correspond to two possible interpretations (see text).

FIGURE 3. Momentum distributions of 14C fragments after the breakup of 15C on a Be target. Total (circle) and gated on the 6.09 MeV γ-ray (losanges). The dotted line corresponds to a pure s-wave calculation, and the dashed-dotted line to a p-wave if a neutron is removed from the core rather than the halo.

A more complex case: 17C

Shell model calculations suggest that the ground state of 17C is more complex than that of 11Be or 15C, as the $0d_{5/2}$ and $1s_{1/2}$ orbits are close to each other, and that both s and d single-particle components could be present in the wave function. Parentages of 1.58 and 0.16 for the $0d_{5/2}$ and $1s_{1/2}$ orbits are obtained with the WBP interaction (5), assuming a coupling to the 2^+ state of 16C and a $3/2^+$ ground state for 17C. The momentum distribution calculated for this configuration is shown in fig. 4 together with the data (circles), as well as an $l=2$ Hankel wave function calculation. The shell model calculation agrees

\[
\text{Counts vs. }^{14}\text{C momentum}
\]

\[
\text{Counts vs. }^{10}\text{Be momentum}
\]
remarkably well with the data and furthermore, the momentum distribution gated on the 2+→0+ transition in 16C (losanges) has basically the same shape as the total distribution (see figure). This observation is radically different from the behavior observed in 11Be and 15C. It points towards the shell model description of this nucleus, where the valence (halo) neutron is coupled to an excited 16C core. Moreover, the intensity of the 1.77 MeV peak accounts for about 80% (preliminary number) of the total cross section, whereas the branching observed for 11Be and 15C is only about 5-10%.

The few results presented here were obtained on the large acceptance and high resolution spectrograph S800. The qualities of this instrument, used in combination with a γ-ray detection array, allow a very detailed study of the wave functions of halo nuclei, as well as the discrimination of the various processes taking place in knockout reactions.

FIGURE 4. Momentum distributions of 16C after the breakup of 17C on a Be target. See text for details.

a. C.E.N. Bordeaux-Gradignan, Le Haut Vigneau, F-33175 Gradignan Cedex, France
b. Dept. of Physics, Univ. of Pennsylvania, Philadelphia, PA 19104-6396, USA
c. Dept. of Physics, Univ. of Notre Dame, Notre Dame, IN 46556, USA

References
