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Imaging techniques are used in many diverse areas such as geophysics, astronomy, medical
diagnostics, and police work. The goal of imaging varies widely from determining the density of the
Earth’s interior to reading license plates from blurred photographs to issue speeding fines. A typical linear
imaging problem involves extracting a source from measured data, where the data is represented as the
convolution of a kernel with a source. An example of this is imaging the angle averaged relative source
function SP(r) from the angle averaged two-particle correlation function, CP(q), often measured in nuclear
reactions [1]:
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Here P is the total momentum of the particle pair and the angle averaged kernel K is is equal to [2]
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The wavefunction �(�) describes the propagation of the pair from a cm separation r out to the detector at
infinity, where relative momentum q is reached. In the semiclassical limit, the relative source SP for any
two particles represents the probability distribution for emitting the the two particles with a separation r,
in their center of mass.

On the face of it, imaging appears straightforward: in the case of the two--particle correlation
function, one could just discretize CP and SP and invert the resulting matrix equation. However, in practice
this may not work as small variations in the data, within statistical or systematic errors, can generate
huge changes in the imaged source. Using our method of Optimized Discretization, we can produce
stable images despite these variations. This method uses the experimental error and the behavior of the
kernel, K0, to enhance the resolution of the image where the image is more ‘‘trustworthy’’ and decrease
sensitivity elsewhere. In this paper, we will summarize this method and its application to proton--proton
and intermediate mass fragment (IMF) two--particle correlation functions. This work is discussed in more
detail in [3].

Typically in an experiment, the angle averaged correlation function CP is determined at discrete
values of the magnitude of relative momentum fqigi=1;:::;M . With each determined value Cexp

i some error
�Ci is associated. We use this set of values fCexp

i gi=1;:::;M to determine the source function. On inserting
a discretized form of S into Eq. (1), we find a set of equations for the correlation functions fCthi gi=1;:::;M ,
in terms of fSjgj=1;:::;N ,
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where the angle-averaged kernel, Kij, is averaged over each bin in r: Kij = 4�
R rj
rj�1

dr r2K(qi; r) . The source



values may be searched for by a �2 minimization
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If we do not constrain the space within which we search for fSjgj=1;:::;N , then a set of linear equations for
the values follows from differentiating (4) with respect to fSjgj=1;:::;N ,
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This is a matrix equation which can be solved for S:
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�
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where Bil = �il=�
2Ci.

The error in the extracted source can be calculated from (6):

�2Sj =
�
K>BK

��1
jj

=
X
�

(u�j )
2

��
: (7)

Here u�j and �� are the eigenvectors and eigenvalues of the N � N matrix

�
K>B K

�
kj
�

MX
i=1

1

�2Ci
KikKij =

NX
�=1

�� u
�
i u

�
j : (8)

We see immediately that the error on the source diverges if one or more of the eigenvalues �� approaches
zero. This might happen for any number of reasons, for example, when K0 maps a region of the source to
zero. Furthermore, it may happen that K0 is approximately constant in some region, so it smoothes over
the source, resulting in a loss of information. If we then try to restore S, we find that we cannot restore S

uniquely at a high resolution. However, we still may be able to restore it at a lower resolution.
In other imaging applications, these problems are typically avoided by imposing constraints such

as a positivity or smoothness on the source. In nuclear imaging we may actually want to test whether the
source actually obeys such a constraint, so we would like a method that yields reliable results without
the need for constraints. We have found that, by rebinning the source and the kernel, we can resolve
the resolution issue and obtain a stable image without additional constraints. We do this by choosing
the discretization of the source and the kernel to minimize the error in the source relative to some model
source:
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Figure 1: Relative proton source for pairs emitted from the 14N +27 Al reaction at 75 MeV/nucleon, in the
vicinity of �lab = 25� in the indicated pair momentum intervals. Solid lines are the sources we extracted from
the data [4] and the dotted lines are the sources we obtained using the Boltzmann{equation calculation.

The actual shape of the model source is not important, provided that it is large where we expect the source
to be large and small where we expect it to be small; we typically use a simple exponential model source.

Now we apply our Optimized Discretization method to analyze the pp correlation data [4], from
the 14N + 27Al reaction at 75 MeV/nucleon. In the proton-proton (pp) case, the angle and spin averaged
kernel is [1]

K0(q; r) =
1

2

X
js``0

(2j + 1)
�
g``

0

js (r)
�2
� 1 ; (10)

where g``
0

js is the radial wave function with outgoing asymptotic angular momentum ` (We also apply the
constraint that the norm of the source is � 1 within the imaged region; since the source is normalized to 1

when integrated over all space [1], this constraint simply eliminates impossible sources from consideration).
We compare the pp sources from the data to those from the transport model [5], over a large range of
relative separations and magnitude of the sources. Past experiences in comparing semiclassical transport
models to single-particle and correlation data have been mixed [4, 8, 9, 10], for this particular reaction and
others in this energy range.

In Fig. 1, we compare the images extracted from the data to the distributions of relative separation
of last collision points for protons with similar momentum from the transport model [1, 5]. Generally,
the Boltzmann-equation model (BEM) yields relative emission point distributions that are similar to the
imaged data, including the dependence on total pair momentum. This finding is somewhat surprising for
the low and intermediate total momentum intervals. While BEM adequately describes high-momentum
wide-angle single-particle spectra of protons, which correspond to the highest total-momentum interval
(see Fig. 1 in [8]), the model overestimates the single-particle proton spectra by as much as 1.5-5 in the
two lower momentum intervals [8]. Looking closer at Fig. 1, we find that the distributions from data are
somewhat sharper at low-r in the two lower total-momentum intervals than the the distributions from

2



Figure 2: Relative source for IMF's emitted from central 84Kr +197 Au reactions from the data of Ref. [6] for
the indicated beam energies. The inset shows the source multiplied by r2. In both plots, the full image extends
out to 90 fm.

the model. We see an even greater disagreement between the data and the model when we compare the
integrals of the source in the BEM and the data. We find that only 55%-70% (depending on the momentum
interval) of the strength of the sources lies within the imaged region in the data, while BEM predicts that
90%-98% of the strength should lie in this range. This implies that many protons are being emitted at
large distances, outside the range of the image, and that BEM produces the protons to close to the decaying
remnant.

The Optimized Discretization method can be applied equally well to IMF sources. We choose the
correlation data of Hamilton et al. [6], from central 84Kr + 197Au reactions at 35, 55, and 70 MeV/nucleon,
because these data allow us to examine the variation of sources with beam energy. Pairs were collected
in the angular range of 25� < �lab < 50� in order to limit contributions to the correlation functions
in [6] from target-like residues. Hamilton et al. tabulate the functions in terms of the reduced velocity
vred = v=(Z1 + Z2)

1=2 , under the assumptions that the Coulomb correlation dominated the fragment
correlation and that the fragments were approximately symmetric, Z=A � 1=2.

When we invert this data, we work in the classical limit of correlations of purely Coulomb origin,
such as investigated between the IMFs in [7]. In this case, the kernel is

K0(q; r) = �(r � rc) (1� rc=r)
1=2 � 1 : (11)

Here the distance of closest approach for symmetric fragments is approximately rc � e2=mN v2red . To image
of the IMF sources, we optimize frjgi=1;:::;N as in the pp case, but we add the constraint r1 � rmin

1 . We do
this because the Coulomb interaction in (11) does not dominate when the measured fragments are in close
contact. The Coulomb correlation alone cannot be relied upon to get information on the most inner portion
of the source. The typical touching distance for the fragments measured in [6] is rt � 5 fm; we chose
a value rmin

1 = 7:0 fm which ensures that there is more volume in the lowest bin outside rt, than inside rt.
The results from the imaging are shown in Fig. 2. Given the errors in the figure, the tails of

3



the sources at the three energies are not very different. However, we observe significant variation with
energy at short relative distances (r < 12 fm) with the source undergoing a larger change between 55 and
75 MeV/nucleon, than between 35 and 55 MeV/nucleon. We also see that a large part of IMF emission
occurs at distances that are not imaged with the protons. This is simply because the IMF kernel is more
sensitive to the large r regions of the source. We find that over 96% of the IMF sources are within 50 fm
but only 72-79% are within 20 fm.

The tails of the IMF sources extend so far that they must be associated with the time extension
of emission. Even so, it is interesting to ask how far into the center of the source must we go to see
where the effects due to the spatial extent of the primary source. In [6], the combinations of single-particle
source radii and lifetimes that gave acceptable descriptions of their data have radii varying between 5
and 12 fm. With this, one could try to separate the temporal and spatial effects using a three-dimensional
source restoration. In the angle-averaged source, the part dominated by lifetime effects should fall off as
an exponential divided by the square of the separation, r2, as a function of relative separation. On the
other hand, the part of the relative source dominated by spatial effects may fall off at a slower pace or
even be constant. In Fig. 2, we see that the sources change weakly with r at 35 and 55 MeV/nucleon and
faster at 70 MeV/nucleon, within the range where sources vary with energy (r<� 12 fm). For reference,
in the insert to Fig. 2 we show the IMF source multiplied by r2. We see an edge at r � 11 fm at 35 and
at 55 MeV/nucleon which disappears at 70 MeV/nucleon. This is consistent with an emission from the
spatial region of a radius R � 11=

p
2 � 8 fm that becomes more diffuse, and possibly spreads out, with the

increase in energy. The disappearance of the sharply pronounced spatial region at 70 MeV/nucleon agrees
with the general expectation on the IMF production in central symmetric collisions or from central sources
in asymmetric collisions that the IMF yields maximize towards 100 MeV/nucleon [13].

We have introduced the new method of optimized discretization to image sources. This method is
suitable for determining the relative source from different particle pair correlations in heavy-ion collisions.
Recognizing the need for stable imaging, in our method we adjust the resolution to minimize the relative
errors of the source. This new method allows one to study the long-range source structure by adjusting the
overall size of the imaged region and the resolution at large distances.

We found that our imaged pp sources change significantly with the total pair momentum, becoming
sharpest for the largest momenta in the cm. Significant portions of the imaged source are missing from the
imaged region at typical participant momenta in the cm, but not at the highest momenta. The integral of
the source in the Boltzmann-equation model [11, 5] agrees with the data, at the highest momenta but the
integral is close to one in the participant and target-emission momenta. Gaussian-source fits to the height
of the pp correlation function [12, 4] are of a limited value because considerable source strength may lie at
large relative separations. In our analysis of midrapidity IMF sources in central84Kr + 197Au reactions
at different beam energies, we found a significant variation of the sources with energy at short distances,
but not at large distances. Considerable portions of the IMF sources extend to large distances (r > 20 fm)
just like the lower total-momentum pp sources. It would be very interesting to image both the IMF and pp
sources in one reaction.
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