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Primary hadronic collisions in a typical nuclear collision at RHIC will occur at
p
s � 200A GeV.

Such a collision is so violent that the partons, i.e. the quarks and gluons comprising the hadrons, will
become deconfined. With hadronic densities exceeding the inverse volume of a typical hadron, the partons
will remain deconfined, forming a quark-gluon plasma (QGP). Since transport theory descriptions of
nuclear collisions have proven successful at lower energies [1], it is natural to attempt to describe the
time evolution of the QGP using a QCD-inspired transport model. A transport model would describe the
time evolution of the parton phase-space1 densities throughout the collision. The procedures for deriving
semiclassical transport equations using time-ordered nonequilibrium methods are well developed [1]. In
fact, there have been several attempts at constructing a QCD transport model based on these procedures
[2, 3, 4], but each of them have their problems. Chief among these problems is that one either treats the
soft long-range phenomena (as in the case of [4]) or one treats the hard short-distance phenomena (in
the case of [2]), but never both in the same framework. In each of these cases, the situation is chosen so
that one has a clear separation between the length scale over which the particles travel (the kinetic scale)
and the length scale of the interaction (the interaction scale). With this scale separation in hand, one
can justify performing a gradient expansion. This expansion amounts to throwing out the short distance
structure of the particle’s phase-space density.

It many cases the gradient approximation is a good one. However, since its applicability depends
on there being a separation of scales and that this scale separation only occurs in a limited set of situations
in a RHIC collision, we can not be sure that the previous approaches to transport are valid. We have
developed the beginnings of a technique that allows us to calculate the phase-space particle density
without relying on the gradient expansion and so we do not need a scale separation for our calculations
to work. The main tools in this investigation are the Generalized Fluctuation-Dissipation Theorem and
phase-space propagators. We describe both in some detail and describe how one uses them to calculate
particle densities. In the end, we use them to describe the shape of a parton cloud. This work is a summary
of part of the work in Ref. [5].

We begin by defining what we mean by a phase-space particle density. First, we define the
two-point functions G><(x; y) as expectation values of two field operators. For example for scalars we
have:

iG>(x; y) =
D
�̂(x)�̂�(y)

E
;

iG<(x; y) =
D
�̂�(y)�̂(x)

E
:

From here we define the particle densities through the Wigner transform of the G< functions:

f(x; p) = iG<(x; p) =

Z
d4(x� y) ei(x�y)�piG<(x; y) =

Z
d4(x� y) ei(x�y)�p

D
�̂�(y)�̂(x)

E
: (1)

We interpret f(x; p) as the number density of particles (or antiparticles) per unit volume in phase-space
1By phase-space, we mean in space, time, momentum and energy (or invariant mass) simultaneously.



per unit invariant mass at time x0:

f(x; p) =
dn(x; p)

d3x d3p dp2

We can see that this interpretation makes sense by integrating f(x; p) over either x or p. When we integrate
out p, we get the coordinate space particle density:

Z
d4pf(x; p) =

D
�̂�(x)�̂(x)

E
=
D
N̂ (x)

E
;

where N̂(x) is the number operator of the �̂ field. The same way, when we integrate over x, we obtain the
momentum space density. The off-shell Wigner function in Eq. (1) is related to the conventional Wigner
function, f0(x; ~p), through the invariant mass integration:

f0(x; ~p) =
dn(x0; ~x; ~p)

d3x d3p
=

Z 1

�1
dp2f(x; p):

This quantity is what one normally solves for in a transport model.
Now, to obtain equations of motion for f(x; p) (or f0(x; ~p)), one normally finds the equations of

motion for G><(x; y) and then applies a Wigner transform. These equations of motion are known as the
Kadanoff-Baym equations. The set of Kadanoff-Baym equations (one for each particle in a system) are
non-perturbative as they contain the complete single particle information of the system. We can solve
them formally, arriving at the Generalized Fluctuation-Dissipation Theorem. For the scalar particles, the
Generalized Fluctuation-Dissipation Theorem reads as:

G><(1; 10) =
Z 1

t0

d2

Z 1

t0

d3 G+(1; 2)�><(2; 3)G�(3; 10)

+

Z
d3x2d

3x3 G
+(1; ~x2; t0)G

><(~x2; t0; ~x3; t0)G
+(~x3; t0; 1

0):
(2)

The Generalized Fluctuation-Dissipation Theorem can be rewritten in phase-space by first taking
t0 !�1 and Wigner transforming in the relative variable x1 � x10 . Doing so, we arrive at

G><(x; p) =

Z
d4y

d4q

(2�)4
~G+(x; p; y; q)�><(y; q) + lim

y0!�1

Z
d3y

d4q

(2�)4
~G+(x; p; y; q)G><(y; ~q)(3)

Here we recognize the Wigner transforms of the self-energy and initial particle density:

�><(x; p) =

Z
d4~x eip�~x�><(x+ ~x=2; x� ~x=2) (4)
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and

�(t0 � x0)G
><(x; ~p) =

Z
d4~x eip�~x�(t0 � (x0 + ~x0=2)) �(t0 � (x0 � ~x0=2))G

><(x+ ~x=2x� ~x=2): (5)

The delta functions render the initial density independent of p0. We have also defined the retarded
propagator in phase-space:

~G+(x; p; y; q) =

Z
d4x0 d4y0 ei(p�x

0�q�y0)G+(x+ x0=2; y + y0=2)G�(x� x0=2; y � y0=2) : (6)

In phase-space, the Generalized Fluctuation-Dissipation Theorem takes a simple meaning. The
phase-space self-energy �><(y; q) gives the quasi-probability density2 for creating or destroying a particle
with momentum q at point y. The full phase-space propagator, ~G+(x; p; y; q), describes how this particle
propagates from y with momentum q to x with momentum p.

To solve Eq. (3), one must make some kind of approximation. Usually one applies the gradient
approximation to Eq. (3), eliminating the d4x0 integral. We do not do this; instead, we assume the
translational invariance of the advanced and retarded propagators. This is reasonable at lowest order in
the coupling since the free field advanced and retarded propagators are translationally invariant. Making
this approximation, the retarded propagator becomes

~G+(x; p; y; q) = (2�)4�4 (p� q)

Z
d4z eip�zG+(x� y + z=2)

�
G+(x� y � z=2)

��
� (2�)4�4 (p� q)G+(x� y; p) :

(7)

We will use G+(x� y; p) in all subsequent calculations. As an additional approximation, we only use the
lowest order contribution to G+(x� y; p). This means that we dress the >< propagators but not the �
propagators when we iterate Eq. (3). Thus, our particles propagate as though they are in the vacuum. In
the next few paragraphs we calculate the lowest order contribution to G+(x� y; p). With this propagator,
the phase-space Generalized Fluctuation-Dissipation Theorem (Eq. (3)) simplifies to:

G><(x; p) =

Z
d4y G+(x� y; p) �><(y; p) + lim

y0!�1

Z
d3y G+(x� y; p)G><(y; ~p) (8)

In terms of the particle densities, we have

f(x; p) =

Z
d4y G+(x� y; p) i�<(y; p) + lim

y0!�1

Z
d3y G+(x� y; p) fi(y; ~p): (9)

Here, fi is the initial particle phase-space density. All of this discussion is done with scalar fields; the
generalization to spinor and vector fields is straightforward and contained in [5].

2Because the self-energy is de�ned through a Wigner transform, it is not positive de�nite. Nevertheless, if we were to smooth it
over unit volumes of phase-space, we could render it positive de�nite. It is the smoothed version of the self-energy that can be truly
called a probability.
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Next, we want to describe how particles propagate in phase-space. Given the definition of G+(x; p)
in Eq. (6), we can perform the integrals with the lowest order (free-field) retarded propagator, for massless
particles, analytically. We find the scalar retarded propagator in phase-space:

G+(�x; q) =
1

�
�(�x0)�(�x2)�(�2)

sin (2
p
�2)p

�2
:

In this expression, the Lorentz invariant �2 is �2 = (�x � q)2 � q2�x2.
This propagator has several notable features. First, we see a �(x0 � y0) which enforces causality

and a �((x � y)2) which keeps the particle inside the light-cone. The rest of the features are tied in
the dependence on the Lorentz invariant �2. First, we note that sin(2

p
�2)=

p
�2 gives rise to damped

oscillations (the Wigner oscillations). As a scale for the drop off in sin(2
p
�2)=

p
�2, we take

p
�2 � 1.

This then gives us estimates for limits on propagation distance. With q� = (q0; qL;~0T ) = q0(1; vL;~0T ), for
space-like momentum �2 becomes

�2 = q20((x0 � y0)vL � (xL � yL))
2 + q2(~xT � ~yT )

2 � 1

This tell us that if q2 = 0, the particle follows its classical trajectory, i.e. (x0 � y0)vL + yL = xL, with
deviations O (1=q0). Furthermore, if ((x0 � y0)vL � (xL � yL))2 = 0, the particle still can propagate
to distances of O

�
1=
pjq2j� transverse to its classical trajectory. This suggests the picture shown in

Fig 1. Classically, a particle should follow a straight line trajectory ~y = ~v�t + ~x as indicated in the
figure. However, since the particle is quantum mechanical, it can end up anywhere within some region
surrounding ~y. This region is an ellipsoid with transverse width given by the invariant mass of the particle
1=
p
�q2 and longitudinal width given by the energy of the particle 1=q0. By comparison, under the gradient

approximation all particles follow straight line classical trajectories, ignoring the effects of true quantum
propagation.

We would like to use our insight from Eq. (9) to discuss the shape of the parton distribution of a
nucleon. We begin by confining the valence quarks in nucleon bag with radius Rbag. For the parton model
to make sense, this nucleon must be moving close to c, Lorentz contracting it in the direction of travel. The
parton cloud of a nucleon is thought to arise from the fluctuation of a valence quark into a valence quark
plus gluon(s). Since the gluon(s) can radiate other gluons or can virtually split into a quark-antiquark
pair(s), we must account for all such processes. This is most conveniently done in the Leading Logarithm
Approximation in which we sum up classes of diagrams such as is shown in Fig. 2. Feynman diagrams of
this type can be written in phase-space and in the figure we outline how the different parts of the diagram
correspond to the Generalized Fluctuation-Dissipation Theorem.

Now, as one travels down the ladder, one requires certain orderings of the parton momentum to
pick up the leading contribution (the Leading Logs) to the process. This momentum ordering tells us the
momentum of the last (nth) parton in the ladder. For both partons with large q2 (the DGLAP partons) and
partons with small x (the BFKL partons)3, the momentum of the nth parton is such that the partons can
not travel far from their creation points. So, knowing the rough momentum dependence as we go down the
ladder, we can guess the shape of the ith generation from the shape of the i � 1th generation [5]; the ith

generation’s distribution is only marginally larger than the i � 1th generation4.
3x is the fraction of the nucleon's longitudinal momentum carried by the parton
4Recoil from the radiated parton, corresponding to the cut rung, plays only a small role in the spreading from one generation to

the next.
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Figure 1: Classically, the particle propagates from ~x to ~y. Quantum mechanically, the particle can propagate to anywhere within
some region dictated by the particle's momentum.
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Figure 2: Cut diagram for the parton density in the Leading Log. Approximation. The upper part of the diagram corresponds to
the parton source �<(y; p) while the bottom part, consisting of two dangling parton lines, corresponds to the phase-space propagator
G+(x� y; p).
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For the DGLAP partons, we require both the invariant mass and the longitudinal momentum
fraction to be ordered as we go down the ladder [6, 7]: �q2n � �q2n�1 � : : :� �q21 � 1=R2

bag � �2
QCD and

1 � x1 � : : : � xn�1 � xn. Furthermore, since q0 � qL � xPL � qT ;
p
�q2, the retarded propagator sends

the nth parton out to Rn? � �hc=
p�q2n transverse to the parton momentum and to Rnk � �hc=qn0 = �hc=xnPL

parallel to the the parton momentum. Thus, the nth parton’s distribution has a width of �RT � Rbag

in the transverse direction and a width of �RL � Rbag= + �hc=xPL in the longitudinal direction. This is
illustrated on the left in Fig. 3. This 1=x dependence of the spread in the longitudinal direction is exactly
what Mueller finds solely based on uncertainty principle based arguments [8].

For BFKL partons, we require an ordering in x only [7]: 1 � x1 � : : :� xn�1 � xn. BFKL-type
evolution has only a weak dependence on the virtuality of the partons as we move down the ladder, so
we assume q2 to be fixed: q2n�1 � q2n � 1=R2

bag. Since x is small, the momentum of each parton can be
predominantly transverse. In fact, the magnitude of qT varies wildly because the particle momentum
undergoes a random walk in ln(q2T ) [7]. This is a well known effect of iterating the BFKL kernel (equivalent
to moving down the ladder). Only in the case where the transverse momentum is small do we get an
appreciable spread in the parton distribution. In this case, we find that the width in the transverse
direction is again �RT � Rbag. However, the longitudinal extent, which is given by �RL � Rbag=+�hc=jq0j,
varies from �RL � Rbag=+�hc=

p
�q2 � Rbag to �RL � Rbag=+�hc=

p
q2 + (xPL)2 + q2T � Rbag, depending

on whether qT is large or small compared to the longitudinal momentum. Now, since the partons are all
space-like, the BFKL partons can have a spread that is significantly larger than the nucleon they belong
to. This observation is the basis for treating the whole nucleus as a sheet of fluctuating color charge in the
McLerran-Venugopalan model [9].

In conclusion, we have developed the beginnings of perturbation theory in phase-space. Central
to this theory is the phase-space Generalized Fluctuation-Dissipation Theorem which describes how a
particle is created and propagates in phase-space. We discussed in some detail how particles propagate
in phase-space. Because this can be done without making the gradient approximation and this does not
rely on a separation of length scales, our work could eventually be used to test the validity of standard
applications of transport theory. Finally, we discussed the shape of the cloud of DGLAP and BFKL
partons. We found the size of DGLAP parton distribution to be moderately wider than the underlying bag,
consistent with the uncertainty-principal based arguments of [8]. We also found that the shape of BFKL
cloud is large in the longitudinal direction, consistent with expectations based on the model of McLerran
and Venugopalan [9].
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Figure 3: On the left: the shape of the DGLAP parton cloud. On the right: the shape of the BFKL parton cloud.
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