NEW EVIDENCE FOR PARITY INVERSION IN $^{10}\mathrm{Li}$ FROM $^{9}\mathrm{Li}\text{-}\gamma$ COINCIDENCES

M. Chartier^{a,b}, L. Chen, K. Govaert, B. Blank^{a,c}, A. Galonsky, N. Gan^b, P.G. Hansen, J. Kruse, V. Maddalena, M. Thoennessen, R.L. Varner^b

The structure of neutron-unbound ¹⁰Li remains an open question and thus also the complete understanding of the two-neutron halo nucleus ¹¹Li. The knowledge of the $(n+{}^{9}Li)$ interaction is of essential importance to theoretical calculations of the three-body Borromean system ¹¹Li $(n+n+{}^{9}Li)$ for which the two sub-systems ²n and ¹⁰Li are unbound.

Simple shell-models predict a $\frac{1}{2}^{-}$ state as the ground state of ¹⁰Li, however the appearance of the $\frac{1}{2}^{+}$ state from the sd-shell as the ground state of ¹¹Be instead of the $\frac{1}{2}^{-}$ was the first case of an intruder state in the shell structure of nuclei. This parity inversion has long ago been clearly observed experimentally where the non-normal parity state ($\frac{1}{2}^{+}$) is 320 keV below the normal parity state which is the first excited state. Theoretical predictions [1] presented on Figure 1 show that the energy of the lowest non-normal parity state with respect to the lowest normal parity state increases systematically with Z for

Figure 1: N = 7 isotone shell-model predictions for the lowest normal and non-normal parity states. Parity inversion is expected in neutron-unbound ¹⁰Li and ⁹He.

isotones with N = 7 and Z > 4. It is expected that this trend should continue in the other direction towards the lighter p-shell N = 7 isotones, and therefore the ground state of¹⁰Li is predicted to be a neutron s-state, i.e. a non-normal parity state (several calculations [2-4] agree that this $\frac{1}{2}^+$ neutron couples with the $\frac{3}{2}^-$ proton to a 2⁻ state).

Experimentally, the situation so far has been much more unclear. Several experiments using transfer reactions have shown evidence for a p-state around 240-540 keV, see Bohlen [5], Young [6], Caggiano [7] *et al.* The first experimental evidence for a neutron s-state at very low energy has been provided by the work of Kryger *et al* [8] using the method of sequential neutron decay spectroscopy at σ .

A virtual s-state at ~ 50 keV was extracted corresponding to a scattering length of ~ -20 fm. However the s-state could represent a decay to the first excited state in⁹Li and would then not be the ground state. The observation by Zinser *et al* [9] of a narrow momentum distribution of the neutrons in coincidence with⁹Li nuclei from the single neutron stripping of ¹¹Li has been interpreted as final state interactions [10] and strongly suggested that the s-state couples to the ground state of ⁹Li (the removal of a halo neutron is not expected to excite the ⁹Li core).

An experiment was recently performed at the National Superconducting Cyclotron Laboratory of Michigan State University to investigate the possibility that the low decay energy s-state is not the ground state of ¹⁰Li and feeds into the first excited state of ⁹Li with the subsequent emission of a 2.7 MeV γ -ray.

A secondary beam of ¹¹Be (46 MeV/nucleon) produced and separated in the A1200 spectrometer bombarded a 300 mg/cm² ⁹Be target located in the N4 vault. A double-sided silicon strip detector located just after the target measured the energy loss (ΔE) and position of the charged fragments. Their residual energy (E) was measured in 8 vertical plastic scintillator bars located at the exit of a deflecting magnet. Particle identification was achieved from the ΔE -E matrix, showing a clear Z separation. The mass number identification required a Monte Carlo simulation to determine the shape of the contours to apply onto the ΔE -E matrix. Neutron and γ -ray coincidences from the breakup of¹¹Be into the channels of ¹⁰Li and ¹⁰Be were measured using the MSU neutron walls at 0° and the BaF₂ array of ORNL-NSCL-TAMU at 90°. The two liquid scintillator filled neutron walls covered an area of 2×2 m² with a total efficiency of about 20 %. The 144 BaF₂ crystals covered a solid angle of approximately 1.5 sr with a total efficiency of about 5 % for γ -rays of 2.615 MeV (²²⁸Th).

The γ -ray and charged fragment coincidence analysis required an event-by-event reconstruction of the γ showers to add back the pair production escape peaks located in the nearest neighbouring crystals. Moreover, since the γ -rays are emitted by a fast moving source ($\beta \approx 0.3$) Doppler shift correction was necessary.

The analysis of these coincidences was optimized for the ¹⁰Be- γ data which could be easily interpreted using the known level scheme of ¹⁰Be. Clear evidence was obtained (see Figure 2-a). for a 3.37 MeV γ -ray from the 2⁺ state and for a 2.90 MeV γ -ray from the decay of the 2⁻ state at 6.26 MeV onto the first excited state (2⁺). A weaker indication of a ~ 6 MeV γ -ray which had not been previously observed has been attributed to the decay of the 1⁻ state at 5.96 MeV onto the ground state (0⁺). The study of the ¹⁰Be- γ coincidences from the single-neutron stripping from ¹¹Be should shed light on the wave function of the ground state of ¹¹Be, the dominant part of which is known to be a $1s_{\frac{1}{2}}$. Sagawa *et al* [1] have suggested that the parity inversion in ¹¹Be can only be explained if more complex contributions, such as the coupling of $d_{\frac{5}{2}}$ to the 2⁺ of ¹⁰Be, are considered. Our data, as well as those from M. Fauerbach *et al* [11], show that not only the core excitation to its first excited state should contribute, but also higher states such as the 2⁻ and the 1⁻. Relative intensities for these γ -rays have been preliminary determined and their final interpretation for the structure of ¹¹Be is on the way.

The number of ${}^{9}\text{Li-}\gamma$ coincidences (see Figure 2-b) correspond to a feeding of ${}^{9}\text{Li}^{*}$ (2.7 MeV) in the single-proton stripping reaction from ${}^{11}\text{Be}$ of 4 ± 1 %, the dominant uncertainty coming from the poor fragment mass identification (a contamination of about 25 % from ${}^{8}\text{Li}$ was determined with the Monte Carlo simulation mentioned above). This branching ratio compares very well with a recent shell-model calculation [12] which leads to the formation of ${}^{9}\text{Li}^{*}$ in the single-proton stripping from ${}^{10}\text{Be}$ of 5.2 %. As expected the number of 2.7 MeV γ -rays is small, therefore the triple γ -neutron-fragment coincidences did not provide sufficient statistics to be analyzed. Although, the angular neutron distributions showed,

Figure 2: (a) ¹⁰Be- γ coincidence spectrum showing evidence for 3.37 (γ_1), 2.90 (γ_2) and ~ 6 MeV (γ_3) γ -rays. (b) ⁹Li- γ coincidence spectrum (thick line) showing an excess of 80 ± 10 γ 's at 2.7 MeV in comparison to the ⁸Li- γ coincidence spectrum (thin line).

similarly to the GSI and GANIL data, a dependence of the width with respect to the selected fragment: a narrower distribution in the case of⁹Li resulting from final state interactions when a resonant intermediate state is formed in ¹⁰Li than in the case of ¹⁰Be corresponding to the diffraction dissociation of the neutron (this observation also supports the mass identification of the fragments).

Both, the weak population of the first excited state in ⁹Li and the narrow momentum distribution of the neutrons in coincidence with ⁹Li fragments indicating the formation of ¹⁰Li lead to the conclusion that the ground state of ¹⁰Li is an s-state which decays on the ground state of ⁹Li. Thus we observe, like in the case of ¹¹Be, a parity inversion in neutron-unbound ¹⁰Li.

a. NSCL, Michigan State University, East Lansing, MI 48824-1321, USA.

- b. Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6368, USA.
- c. CENBG, BP 120, Le Haut Vigneau, 33175 Gradignan Cedex, FRANCE.

References

- 1. H. Sagawa, B. A. Brown and H. Esbensen, Phys. Lett. B 309 (1993) 1.
- 2. B. A. Brown, Int. Symp. on Frontiers of Nucl. Struc. Phys., RIKEN, Japan (1993).
- 3. H. Kitagawa and H. Sagawa, Nucl. Phys. A 551 (1993) 16.
- 4. N. A. F. M. Popelier et al, Z. Phys. A 346 (1993) 11.
- 5. H. G. Bohlen *et al*, Nucl. Phys. A 616 (1997) 254c.
- 6. B. M. Young et al, Phys. Rev. C 49 (1994) 279.
- 7. J. A. Caggiano *et al*, to be published.
- 8. R. A. Kryger et al, Phys. Rev. C 47 (1993) R2439.
- 9. M. Zinser et al, Phys. Rev. Lett. 75 (1995) 1719.

- F. Barranco, E. Vigezzi and R. A. Broglia, Phys. Lett. B 319 (1993) 387.
 M. Fauerbach *et al*, in preparation.
 N. Timofeyuk and I. Thompson, private communication.