NEW EVIDENCE FOR PARITY INVERSION IN 10Li FROM 9Li-γ COINCIDENCES

M. Chartiera,b, L. Chen, K. Govaert, B. Blanka,c, A. Galonsky, N. Gand, P.G. Hansen, J. Kruse, V. Maddalena, M. Thoennessen, R.L. Varnerb

The structure of neutron-unbound 10Li remains an open question and thus also the complete understanding of the two-neutron halo nucleus 11Li. The knowledge of the $(n+^{9}$Li) interaction is of essential importance to theoretical calculations of the three-body Borromean system 11Li ($n+n+^{9}$Li) for which the two sub-systems 2n and 10Li are unbound.

Simple shell-models predict a $\frac{1}{2}^-$ state as the ground state of 10Li, however the appearance of the $\frac{1}{2}^+$ state from the sd-shell as the ground state of 11Be instead of the $\frac{1}{2}^-$ was the first case of an intruder state in the shell structure of nuclei. This parity inversion has long ago been clearly observed experimentally where the non-normal parity state ($\frac{1}{2}^+$) is 320 keV below the normal parity state which is the first excited state. Theoretical predictions [1] presented on Figure 1 show that the energy of the lowest non-normal parity state with respect to the lowest normal parity state increases systematically with Z for isotones with $N=7$ and $Z>4$. It is expected that this trend should continue in the other direction towards the lighter p-shell $N=7$ isotones, and therefore the ground state of 11Li is predicted to be a neutron s-state, i.e. a non-normal parity state (several calculations [2-4] agree that this $\frac{1}{2}^+$ neutron couples with the $\frac{3}{2}^-$ proton to a $2^-\ $ state).

Experimentally, the situation so far has been much more unclear. Several experiments using transfer reactions have shown evidence for a p-state around 240-540 keV, see Bohlen [5], Young [6], Caggiano [7] et al. The first experimental evidence for a neutron s-state at very low energy has been provided by the work of Kryger et al [8] using the method of sequential neutron decay spectroscopy at 0.

![Figure 1: N = 7 isotope shell-model predictions for the lowest normal and non-normal parity states. Parity inversion is expected in neutron-unbound 10Li and 9He.](image-url)
A virtual s-state at ~ 50 keV was extracted corresponding to a scattering length of ~ -20 fm. However the s-state could represent a decay to the first excited state in ³Li and would then not be the ground state. The observation by Zinser et al [9] of a narrow momentum distribution of the neutrons in coincidence with ³Li nuclei from the single neutron stripping of ¹¹Li has been interpreted as final state interactions [10] and strongly suggested that the s-state couples to the ground state of ³Li (the removal of a halo neutron is not expected to excite the ¹Li core).

An experiment was recently performed at the National Superconducting Cyclotron Laboratory of Michigan State University to investigate the possibility that the low decay energy s-state is not the ground state of ¹⁰Li and feeds into the first excited state of ³Li with the subsequent emission of a 2.7 MeV γ-ray.

A secondary beam of ¹¹Be (46 MeV/nucleon) produced and separated in the A1200 spectrometer bombarded a 300 mg/cm² ⁹Be target located in the N4 vault. A double-sided silicon strip detector located just after the target measured the energy loss (ΔE) and position of the charged fragments. Their residual energy (E) was measured in 8 vertical plastic scintillator bars located at the exit of a deflecting magnet. Particle identification was achieved from the ΔE-E matrix, showing a clear Z separation. The mass number identification required a Monte Carlo simulation to determine the shape of the contours to apply onto the ΔE-E matrix. Neutron and γ-ray coincidences from the breakup of ¹¹Be into the channels of ¹⁰Li and ¹¹Be were measured using the MSU neutron walls at 0° and the BaF₂ array of ORNL-NSCL-TAMU at 90°. The two liquid scintillator filled neutron walls covered an area of 2 x 2 m² with a total efficiency of about 20 %. The 144 BaF₂ crystals covered a solid angle of approximately 1.5 sr with a total efficiency of about 5 % for γ-rays of 2.615 MeV (²⁸Th).

The γ-ray and charged fragment coincidence analysis required an event-by-event reconstruction of the γ showers to add back the pair production escape peaks located in the nearest neighbouring crystals. Moreover, since the γ-rays are emitted by a fast moving source (β ≈ 0.3) Doppler shift correction was necessary.

The analysis of these coincidences was optimized for the ¹¹Be-γ data which could be easily interpreted using the known level scheme of ¹¹Be. Clear evidence was obtained (see Figure 2-a). for a 3.37 MeV γ-ray from the 2⁺ state and for a 2.90 MeV γ-ray from the decay of the 2⁻ state at 6.26 MeV onto the first excited state (2⁺). A weaker indication of a ~ 6 MeV γ-ray which had not been previously observed has been attributed to the decay of the 1⁻ state at 5.96 MeV onto the ground state (0⁺). The study of the ¹¹Be-γ coincidences from the single-neutron stripping from ¹¹Be should shed light on the wave function of the ground state of ¹¹Be, the dominant part of which is known to be a 1s₀, Sagawa et al [1] have suggested that the parity inversion in ¹¹Be can only be explained if more complex contributions, such as the coupling of Δₚ to the 2⁺ of ¹¹Be, are considered. Our data, as well as those from M. Fauerbach et al [11], show that not only the core excitation to its first excited state should contribute, but also higher states such as the 2⁻ and the 1⁻. Relative intensities for these γ-rays have been preliminary determined and their final interpretation for the structure of ¹¹Be is on the way.

The number of ³Li-γ coincidences (see Figure 2-b) correspond to a feeding of ³Li⁺ (2.7 MeV) in the single-proton stripping reaction from ¹¹Be of 4 ± 1 %, the dominant uncertainty coming from the poor fragment mass identification (a contamination of about 25 % from ⁸Li was determined with the Monte Carlo simulation mentioned above). This branching ratio compares very well with a recent shell-model calculation [12] which leads to the formation of ³Li⁺ in the single-proton stripping from ¹⁸Be of 5.2 %. As expected the number of 2.7 MeV γ-rays is small, therefore the triple γ-neutron-fragment coincidences did not provide sufficient statistics to be analyzed. Although, the angular neutron distributions showed,
Similarly to the GSI and GANIL data, a dependence of the width with respect to the selected fragment: a narrower distribution in the case of 9Li resulting from final state interactions when a resonant intermediate state is formed in 10Li than in the case of 10Be corresponding to the diffraction dissociation of the neutron (this observation also supports the mass identification of the fragments).

Both, the weak population of the first excited state in 9Li and the narrow momentum distribution of the neutrons in coincidence with 9Li fragments indicating the formation of 10Li lead to the conclusion that the ground state of 10Li is an s-state which decays on the ground state of 9Li. Thus we observe, like in the case of 11Be, a parity inversion in neutron-unbound 10Li.

a. NSCL, Michigan State University, East Lansing, MI 48824-1321, USA.
b. Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6368, USA.
c. CENBG, BP 120, Le Haut Vigneau, 33175 Gradignan Cedex, FRANCE.

References

7. J. A. Caggiano et al, to be published.
12. N. Timofeyuk and I. Thompson, private communication.