
QUANTUM CHAOS AND CONVERGENCE OF SHELL MODEL ENERGIES

Mihai Horoi, Alexander Volya and Vladimir Zelevinsky

Statistical properties of complex quantum systems have been studied extensively from various
viewpoints. Recently, the detail studies of highly excited states in realistic atomic [1] and nuclear [2]
calculations demonstrated that such many-body systems are close to the random matrix theory (RMT)
limit although they reveal some deviations which reflect the remnants of the regular structure due to the
presence of the mean field, coherent components of the residual interaction and its two-body character.
Precise experimental information exists, as a rule, about low-lying states only. However we believe that
an intimate relation exists between the low-energy spectroscopy and onset of quantum chaos at high
excitation energy and high level density.

The shell model approach is based on the large-scale diagonalization even if one is interested in
the low-lying states only. The dimensions of matrices increase dramatically with the number of valence
nucleons. Here we suggest a simple approach for calculating energies of relatively low lying states which
allows one to reduce those dimensions by orders of magnitude, while keeping high precision of the results.
The approach is based on the statistical properties of complicated many-body states. Because of the
strong residual interaction, the eigenstates are extremely complex superpositions of simple configurations.
However, in contrast to the RMT limit, the stationary wave functions are not fully delocalized in shell model
Hilbert space. Due to inherently self-consistent nature of the residual interaction (even if it is extracted in
a semiempirical manner), its strength does not exceed the typical spacings between single-particle levels
which are determined by the mean field, i.e. by the same original forces. Together with the fact that
the two-body forces cannot couple very distinct configurations, this leads to the band-like structure of
the hamiltonian matrices in the shell model basis. For such matrices, both mathematical and numerical
arguments favor the localization of the eigenstates in Hilbert space.

The generic many-body states in complex atoms or nuclei have a typical localization width which
can be measured (in a given basis) in terms of wave-function (information) entropy [2]. Inversely, the
simple shell model configurations are packets of the eigenstates. Their strength functions are fragmented
over the range of energies, and in the nuclear case, which is close to the strong coupling limit, the typical
spreading width can be estimated [3] as � � 2�� in terms of the energy dispersion of a simple configuration
jki, �2

k
= hkj(H � hkjHjki)2jki =

P
l6=k

jHklj2. Here Hkl are the off-diagonal elements of the residual
interaction between the basis states so that the calculation of �k does not require any diagonalization. The
dispersions of different simple states fluctuate weakly and their mean value �� can be found without even
constructing the full hamiltonian matrix in the spin and isospin projected basis.

The practical method, utilizing the knowledge of a generic energy dispersion ��, was suggested
in [4]. The shell model states are grouped into partitions (sets of states belonging to the same particle
configuration). Since the states separated in energy by an interval broader than the spreading width are
not significantly mixed with the studied state, we truncated the matrix retaining only the partitions whose
statistical centroids �E = hkjHjki are closer than 3�. The spin-isospin projection and the elimination of the
center-of-mass admixtures can be done within the truncated subspace only. In order to keep the correct
shell model structure, the partitions should be included as a whole. As shown in [4], this simple method
allows for the calculation of low-lying energies with sufficient precision in large shell-model spaces. The
comparison with available exact results reveals an overlap of the truncated eigenvectors with the exact



ones on the level of better than 90%.
Going beyond the simple truncation, we have studied [5] the convergence of the level energies to

the exact values as a function of the increasing dimension n of the diagonalized matrix. As an example
we take the 51Sc nucleus where the pf-shell model dimensions of 1=2� and 3=2� states are 13016 and
24474, respectively. Spectroscopic information of this radioactive isotope is only tentative providing an
interesting experimental and theoretical problem. Fig. 1 shows the calculated energies of the two lowest
3=2� and 1=2� states for several values of n ranging from n = 2000 to the full dimension N . Already the
smallest dimension leads to a good agreement within few hundred keV. The solid lines show that in all
four cases, as the dimension increases, the running eigenvalue converges very fast and monotonously to
the exact result. The convergence is almost pure exponential, E(n) = E1 + A exp(�n). The exact values
of the fitted parameters are given in the figure; typically A � 200� 300 keV,  � (6� 8)=N .

The exponential convergence of eigenvalues would be extremely helpful for shell model practi-
tioners. It would make almost redundant the full large scale diagonalization if one is interested in the
low-lying states only. Instead, the procedure of calculating the eigenvalues and the eigenfunctions for
several increasing dimensions (still far from the full value and therefore easily tractable) would end in
determining the exponential parameters and simple extrapolation to the exact result.

At present, the rigorous mathematical theory of convergence is absent. The convergence under
consecutive truncations is determined by the type of the matrix and by the unperturbed basis which orders
the basis vectors in a certain way. One neeeds to know the weight of small remote admixtures in the
stationary eigenvectors. Earlier it was established that the energy behavior of the remote wings of the
strength function with high accuracy can be described [3] by an exponential function of energy. This clear
manifestation of the localization of the eigenfunctions typical for the banded hamiltonian structures is
the origin of the exponential convergence. We considered a number of simple models where it is possible
to determine the character of convergence. Roughly speaking, it is the case in the band-like matrices
with off-diagonal matrix elements hV 2i smoothly decreasing outside the band and the ratio hV2i=D2

approximately constant along the band (D is the level spacing in the remote region).
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Figure 1:

Figure 1: Energy deviations from the exact pf-shell model results for the lowest excited states 1=2� and 3=2� in
51Sc, diamonds, calculated with the FPD6 e�ective interaction as a function of the progressive matrix truncation
n; solid lines give a �t A exp(�n).
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