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Recently, Moretto and collaborators [1] have put forth the measurement of fragment multiplicity
distributions as an insightful tool for understanding the mechanisms and the driving principles of nuclear
fragmentation. Experimental fragment yields have shown themselves to be well described by binomial
distributions, while the interpretation of the binomial parameters has been deeply debated [2,3,4]) .

Here, we present calculations of fragment multiplicity distributions for percolation calculations
[5,6,7]. Our aim is to address the following questions:

1. Are fragment multiplicity distributions from percolation calculations of a binomial nature?
2. Is the variance of the multiplicity distribution governed by simple conservation laws or by other

principles?

At first glance, percolation models seem to have little in common with a nuclear multifragmentative
event. No dynamics are present, and bulk properties such as pressure and specific heat do not even have
analogs in a percolative description. However, percolation models do allow one to study the effects
of particle number conservation and geometry, and therefore can prove insightful in modeling nuclear
fragmentation. For our studies we employ bond percolation where p is the probability of breaking an
individual bond. For values of p below pc = :7512 the majority of sites belong to a single large cluster. When
p exceeds pc, the lattice is broken into smaller clusters. For each event the number n of intermediate-mass
fragments (IMFs) is recorded. The default definition of an IMF is that it is of size, 3 � Z � 20. By recording
thousands of events multiplicity distributions were generated for given values of p. Figure 1 displays
multiplicity distributions for p= 0.7 and p=0.8 for the 123-site case.

Moretto and collaborators have reported that the multiplicity distributions of IMFs in nuclear
fragmentation are observed to be well described by binomial distributions. Binomial distributions are
defined by two parameters pb and Nb. The mean and variance of binomial distributions are given by:

hni = pbNb (1)

�2 = hni(1� pb);

with the variance always being less than the mean. Thus, by measuring the mean and variance, one
can determine the binomial parameters, pb and Nb. In the limit that the variance equals the mean the
distribution becomes Poissonian, and if the variance is larger than the mean (super-Poissonian), the
distribution can no longer be considered binomial. However, one might then consider the distribution to
be a negative binomial.

The lines in Figure 1 represent negative binomial and binomial fits for the p=0.7 and the p=0.8 cases
respectively, where the parameters were chosen to match the mean and variance of the two distributions. In
all the calculations we have performed, two-parameter fits have been remarkably successful in describing
multiplicity distributions.

Figure 2 displays hni=Nsites and �2=hni as a function of p for the small and large lattices. The
distributions are super-Poissonian for p < pc and become sub-Poissonian just above pc. The super-
Poissonian behavior is a signal of a positive correlation between IMFs, as it signals that the presence



Figure 1: IMF multiplicity distributions from percolation calculations using 123 sites (circles) are well described
by two-parameter �ts to binomial or negative binomial distributions.

of an IMF will be positively correlated with the production of other IMFS. We argue that this positive
correlation is a signal of the fragmentative nature of the percolation model.

To understand the correlation, we rewrite the expression for the difference of the variance and
mean in terms of a correlation function,

�2 � hni =
X

a6=b

h(na � �na)(nb � �nb)i+
X

a

hn2a � na � �n2ai (2)

�
X

a6=b

h(na � �na)(nb � �nb)i

The sums over a and b represent the sums over all types of IMFs, where a type a refers to a specific size,
shape and position. The first sum on the right-hand side of Eq. (2) represents the correlation between
different IMFs. The second sum can be neglected, as the first two terms of the second sum cancel each
other since na can only be zero or unity, and the last term, which is negative, is small. This last term
becomes zero in the limit that the probability of any specific IMF (defined by size, shape and position) is
small.

Since the bond breaking is random, only fragment types that share the same sites or the same
boundaries are correlated. If type a and type b share any of the same sites, the correlation is clearly
negative as they can not coexist. This is related to particle number conservation. However, if a and b

merely share some section of their boundaries a positive correlation can exist. This positive correlation
appears only for values of p where a majority of the sites are taken up by large clusters, larger than the
size of an IMF. The presence of an IMF a then creates extra surface within some larger cluster. The
increased surface area eases the production of a second IMF of type b which borders the first IMF. As p

is increased to the point where most of the sites are assigned to fragments the same size or smaller than
IMFs, the positive correlation disappears, and the effects of particle-number conservation are dominant.

The super-Poissonian variance of the IMF multiplicity distribution is a signal of the fragmentative
aspect of the percolation model. The positive correlation arises from the additional surface created by
the production of a fragment. For sequential models of fragment formation, e.g. an evaporative picture,
surface area is not increased by the production of a fragment, as the nucleus is assumed to return to
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Figure 2: The average multiplicity of IMFs and the variance is shown for percolation calculations of 123 sites
(circles) and 4169 sites (squares). The super-Poissonian behavior indicates a positive correlation between IMFs
that signals true fragmentative behavior.
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it’s spherical shape before the production of the next fragment. In fact, evaporative pictures introduce
additional negative correlations due to energy conservation since the production of an IMF uses a large
amount of energy to surpass the Coulomb barrier, which then makes subsequent IMF production difficult.
Thus, the study of IMF multiplicity distribution in nuclear collisions provides insight into the general
principles of the fragmentation mechanism.

a. Permanent Address: Department of Physics, Abbassia 11566, Cairo, EGYPT

References

1. L.G. Moretto, et al., Phys. Rev. Lett. 74, 1530 (1995).
L.G. Moretto, et al., Phys. Rep. 287, 249 (1997).

2. J. Toke, D.K. Agnihotri, B. Djerroud, W. Skulski and W.U. Schroeder, Phys. Rev. C 56, R1686 (1997).
3. M.B. Tsang and P. Danielewicz, Phys. Rev. Lett. 80, 1178 (1998).
4. L.G. Moretto, L. Bealieu, L. Phair, and G.J. Wozniak, Los Alamos report, nucl-ex/9709001 (1997).
5. W. Bauer, Phys. Lett. B 150, 53 (1985).

W. Bauer, et al., Nucl. Phys. A 452, 699 (1986).
W. Bauer, Phys. Rev. C 38, 1297 (1986). item X. Campi, J. Phys. A 19, L917 (1986).
Phys. Lett. B208, 351 (1988).

6. D. Stauffer and A. Harony, Introduction to Percolation Theory, Taylor and Francis, London (1985).Enter
your first reference here.

3


