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1. Introduction

The status of the design and implementation of the next generation data acquisition system for the
NSCL is discussed in this paper. In order to provide an understanding of the requirements and limitations
of current data acquisition systems and hardware, an exploration of current research was pursued and
performance testing was conducted using drivers either constructed or modified by the author. The results
of these explorations and tests are outlined below and a preliminary system design outlined. The working
name for this project is Spectrodag.

2. Background

In order to provide background for the design and implementation of the next generation data
acquisition (DAQ) system at the NSCL, prior research was investigated. This investigation revealed that
DAQ systems that exploit the aggregate capabilities of distributed computer systems are becoming common
[1,3,4]. The use of commodity PC hardware and the Linux operating system is being adopted in several
cases [1] demonstrating, that commodity hardware and operating systems are an effective alternative to
real-time systems and can be effectively used for data acquisition. High speed networking technologies
using standard network protocols [5,6] are replacing in-house, custom networks and protocols.

This preliminary research provided the background needed to outline an initial approach for
designing and implementing the next generation DAQ system at the NSCL. First, it is desirable to have
a distributed system that uses standard operating systems and network technologies. Such a system is
scalable, allowing for the addition of hardware to provide greater aggregate processing power or network
bandwidth. Also, the upgrade path for replacing older hardware and networks with newly available
technologies no longer requires that custom protocols and hardware be reworked. Second, there needed to
be further exploration of VME-to-PCI hardware and current network technologies.

3. Hardware and Drivers

In this section, VME-to-PCIl hardware and drivers are discussed and some comparison tests
presented. Second is an exploration of gigabit ethernet and a short discussion on the potential impact of
network technologies on the DAQ system.

3.1. VME to PCI Hardware and Drivers

One early design conclusion was that the readout controllers (ROCs) for the DAQ system were
going to be built using PC style hardware. A number of reasons, including low cost, adequate performance
and flexibility of software design made this decision attractive. The low cost of these systems also provides
the benefit of being able to dedicate systems to particular tasks. For instance a PC can be a dedicated
ROC.



A number of different operating systems are available for these platforms including our two
primary contenders: Linux and NT. It was decided to try to stay with a standard operating system kernel
as opposed to a real time kernel if adequate performance levels could be maintained. This was principally
to avoid the additional overhead and difficulties that arise from using, designing and maintaining real
time kernels.

Many of the new generation DAQ systems are distributed. This requires that a ROC both collect
data from the system and transmit it to other systems. This type of system requires that both the readout
and transmission processes as well as supporting subsystems have adequate priority to complete their
tasks in a timely manner. Dedicated hardware with a standard preemptive operating system is likely to
provide for these requirements.

There are a number of VME-to-PCI hardware bridges coming onto the market. Our current choice is
the Bit-3 Model 617 Adapter produced by SBS Bit-3 Operations. An initial Linux driver was acquired from
NIKHEF and modified by the author to support the new Linux PCI interface, stabilize driver operation
and providing proc filesystem access for control and monitoring. Several performance tests were done
comparing Linux and NT with regard to interrupt and polling latencies. Polling latencies were comparable,
both systems demonstrating latencies on the order of 4.6 microseconds. Typical interrupt latencies were
300 microseconds under NT running on 200MHz Pentium Il as compared to 43.4 microseconds under
Linux on a 400MHz Pentium Il. Even when scaled with regard to the CPU speed, Linux demonstrates a
significantly lower interrupt latency than that of NT.

Figure 1 is a plot of VME memory bandwidth using memory mapping from Linux using the Bit-3
Adapter. This performance is comparable to that seen under NT. The bandwidths shown during this test
are considered adequate for the next generation DAQ system.
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Figure 1: VME Memory Mapped Bandwidth

Linux also has a number of other advantages over NT. Linux provides easy remote access in the
form of telnet, ftp and exported X displays among others. NT also provides some types of remote access,
but these are typically available only with the NT Server installation or as add on products. These options
are more costly and are often less mature than many of the comparable Linux/Unix counterparts. Linux



provides a cleaner more direct interface for constructing device drivers as well as providing complete
kernel source in the event that the operating system should need to be customized.

Considering both the advantages and the improved interrupt latencies, Linux was chosen for the
the ROC operating system.

3.2. Networking

It is anticipated that network bandwidth and latencies may also impact the overall performance of
the DAQ system. With this in mind experimentation using gigabit ethernet technology was pursued. Using
a FDR-12 repeater and Hamachi gigabit ethernet cards provided by Packet Engines, Inc., client-to-server
latency and bandwidth experiments were conducted between a 400MHz Pentium Il with 64MB RAM and
a 450MHz Pentium Il with 128MB RAM. The preliminary driver for the Hamachi card was acquired
from CESDIS and further modified to increase stability and throughput by the author. Additionally, test
programs were constructed to provide performance testing.

Figure 2 shows how bandwidth varies with kernel buffer size and application message size.
This reveals that bandwidth increases with increased kernel buffer sizes and that application messages
sizes above 40 KBytes improve bandwidth only slightly. A maximum client-to-server throughput of
approximately 320 MBytes/sec was witnessed during this experiment.
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Figure 2: Hamachi Bandwidth vs. Message Size

Figure 3 is a plot of latencies using a ping-pong test measured from the start of the transmission
to the start of reception. This experiment shows how latency varies with small message sizes and with
different interrupt mitigation settings. The Rx values represent increasing minimum delays between



interrupts generated by the Hamachi card for receiver events. This shows that for message sizes between
8 and 128 bytes latencies remain near constant for each Rx value.
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Figure 3: Hamachi Ping-Pong Latencies

Further experimentation should be done using other networking technologies, such as ATM, to
provide a basis for comparison. This comparison can then be used to help determine the best networking
solution for the different segments of the DAQ system. It is expected that there may be different
requirements for certain segments of the system than for others. For example, greater bandwidth
requirements may be necessary between the systems that participate directly in the acquisition of data
than those that monitor the system.

4. DAQ System Design

The general design of the DAQ system is both that of a distributed and a client/server system.
The system should be distributed in that it could support multiple PCs running as both dedicated ROCs
and processing nodes. Processing nodes could be used to provide secondary massaging of data as read and
transmitted by ROCs or other nodes. This structure helps provide for scalability in that it is possible to
add additional ROC and processing nodes to help provide the aggregate CPU power or network bandwidth
to handle larger data loads or additional processing. A distributed system also allows for geographic
distribution of readout devices while allowing for the coherent assembly of event data.

The system would be client/server in that control, monitoring and analysis clients could access the
distributed core of the system through client/server interfaces. A client/server interface makes it possible



to have clients that run on a wider variety of operating systems and platforms even though the core system
may run atop a particular class of platforms such as Linux/Unix. This helps simplify the design and
implementation of the core system while allowing users access through a wider variety of desktop systems.

Figure 4 is a simplified diagram of the basic DAQ system design. In this figure, it can be seen that
the ROC and slow control systems inject data into the system that can be further processed or written to
storage by filter or processing elements. A status and control pipeline provides access to the system for
client machines.
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Figure 4: Basic DAQ System Diagram

The system is being coded in C++. It is anticipated the the object oriented nature of this language
can be used to create abstractions, such as buffers and pointers, that can be learned and used easily while
hiding the more complex system implementation from the user.

5. Conclusion

In this paper a discussion of hardware, networking and software issues and explorations, and
how they impact the preliminary design and implementation of the next generation DAQ system at the
NSCL has been presented. A summary of the explorations and experiments conducted that have helped
guide this initial design was provided. It is anticipated that this design will undergo further revisions as
implementation progresses.
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