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Calculations based on the microcanonical distribution [1,2] have provided tremendous insight into
the process of nuclear fragmentation. In order to enforce the conservation laws, numerically intensive
Monte Carlo procedures have been implemented. Recently, Mekjian and collaborators [ 3] have discovered
a recursive technique which permits the calculation of exact canonical partition functions, ZA, for non-
interacting fragments using a recursive formula.
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where !i is the partition function for a single fragment of type i and mass ai at temperature T . This formula
allows practically instant calculation of the partition function, and therefore of a variety of statistical
quantities. The method is applied to any system where the explicit interaction of the individual fragments
can be neglected, although mean field and excluded volume effects are easily incorporated. The method
exactly sums over every possible division of the A nucleons into fragments.

During the past year, we have made several contributions to this approach [ 4,5]. First, using the
liquid-drop model to generate the partition functions of individual fragments, we have investigated the
thermal properties of the model and shown that it gives a discontinuity in the specific heat as a function
of temperature at constant volume. The discontinuity is related to a fragmentation transition, where the
number of fragments suddenly rises. Secondly, the model was extended to consider multiple conserved
charges, thus allowing the exact conservation of both neutron and proton number. It was also found that
conservation of energy could be incorporated, thus making microcanonical calculations possible. Finally,
recursion relations were developed for the multiplicity distributions which allowed exact calculations of
intermediate-mass-fragment (IMF) multiplicity distributions, both for the canonical and microcanonical
cases.

To generate the microcanonical distributions, energy was treated like a conserved charge measured
as an integer in units of �E. The number of ways to arrange a system of mass A at energy E, NA;E ,
satisfies the recursion relation,
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Here, ni;Ei
is the number of ways to arrange a single fragment in the volume with energy Ei, which is

found by convoluting the internal density of states with the density of states of the fragment’s center of
mass.



The recursion relation for the multiplicity distributions satisfies the relation,
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Here, Pb;A;n is the multiplicity of fragments in the set defined by b in a system of size A. The microcanonical
equivalent is
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The advantage of the recursion relations relative to Monte Carlo procedures is that the calculations
are exact and can be used for quantities which might require an inordinate amount of sampling in a Monte
Carlo scheme. One example of such a problem is the calculation of the multiplicity distribution, and it’s
mean and variance. Fig. 1 displays the multiplicity distribution for a system of size A = 100 at three
different excitation energies. The liquid-drop model was used to generate the partition functions, with the
isospin degree of freedom ignored.

Fig. 1. Multiplicity distributions of IMFs as generated from a microcanonical ensemble are
displayed for three excitations, E=A = 7.5 MeV (squares), 12.5 MeV/A (triangles) and 17.5 MeV/A (circles).
Calculations assumed a size A=100 and ignored Coulomb effects. The distributions are well described by
binomial distributions (dashed lines).

Figure 2 displays the mean multiplicity and the correlation coefficient, which is related to the
variance by, � = (�2 � hni)=hni2. The correlation is positive or negative depending on whether the system
is super-Poissonian or sub-Poissonian respectively.

Finally, we remark on the numerical requirements of these techniques. Calculations with the
canonical ensemble finish within seconds or minutes. However, microcanonical calculations may take on
the order of an hour, and if microcanonical calculations are performed while conserving both neutron and
proton number, the calculations may require days of CPU time. However, it should be stressed that when
such a calculation is finished that the results are generated for all excitation energies, and are exact.
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Fig. 2. The average number of IMFs and the correlation coefficient as generated from a microcanon-
ical calculation for a mass A=100 system are shown with (dashed line) and without (solid line) Coulomb.
The inclusion of Coulomb reduces the amount of energy needed for fragmentation. Whereas canonical
calculations yield a sharp peak in the correlation coefficient, microcanonical calculations reveal a broad
maximum. Even when Coulomb is neglected, the IMF multiplicity distributions remain sub-Poissonian at
all excitations.
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