BRANCHING RATIOS FOLLOWING THE BETA DECAY OF ⁶⁹Ni^m

J.I. Prisciandaro, P.F. Mantica, A.M. Oros-Peusquens, D.W. Anthony, M. Huhta, P.A. Lofy and R.M. Ronningen

In the 1998 NSCL annual report [1] we discussed the identification of a 3.4(7) s isomeric state in ⁶⁹Ni which was directly populated following the fragmentation of a 70 MeV/nucleon ⁷⁶Ge beam in a ⁹Be target. The identification of this isomeric state was based on a newly discovered 1296 keV beta delayed gamma ray. From the experimental data, we concluded that the decay of the $1/2^{-}$ isomer in ⁶⁹Ni proceeds mainly through the excited $3/2^{-}$ state at 1296 keV in ⁶⁹Cu, see figure 1. No other excited state in ⁶⁹Cu has been observed following the β decay of this isomer, neither in this study [2] nor in a study of the β decay of ⁶⁹Co and its subsequent daughters [3]. Since [1], we have extracted an upper limited for the β branch of the $1/2^{-}$ isomeric state in ⁶⁹Ni to the ground state of ⁶⁹Cu of 36%. This value was arrived at by comparing the total number of ⁶⁹Ni nuclei implanted within our 300 µm silicon PIN detector with the intensities of the γ rays following the β decay of the $1/2^{-}$ isomeric state and the ground state of ⁶⁹Cu, as well as the β -decay Q value from Ref. [4], log ft values of 4.48 (upper limit) and 5.24 (lower limit) to the $3/2_{-}^{-}$ and $3/2_{-}^{-}$ states in ⁶⁹Cu, respectively, have been deduced.

Fig. 1. Schematic of the β decay of ⁶⁹Ni along with the proposed configurations.

The beta decaying $v p_{1/2}^{-1}$ isomeric state at 321 keV was first proposed by Grzywacz *et al.* [5] following a study of microsecond isomeric states in neutron-rich nuclides near ⁶⁸Ni. Since that time, this isomeric state has been identified both via the study of the A = 69 β decay chain ⁶⁹Co \rightarrow ⁶⁹Ni \rightarrow ⁶⁹Cu by Mueller *et al.* [3] and also by the direct production of the isomer via projectile fragmentation as observed in this work. Based on these studies it has been concluded that the β decay of this $1/2^{-1}$ isomer predominately follows through the excited $3/2^{-1}$ state at 1296 keV in ⁶⁹Cu. If we consider the excited $3/2^{-1}$ state with a pure configuration, then the resulting matrix elements for the Gamow-Teller decay would look as follows:

$$< 3/2_{2}^{-} ||T(GT)||1/2^{-}> = < \pi 2 p_{3/2} ||T(GT)||v 2 p_{1/2}>$$
 (1)

$$< 3/2_{1}^{-} ||T(GT)||1/2^{-} > \approx 0$$
 (2)

Therefore, the β -decay of the $1/2^{-1}$ isomer of ⁶⁹Ni would proceed only to the excited $3/2^{-1}$ state at 1296 keV in ⁶⁹Cu. Some configuration mixing, resulting in a fragment of the $\pi 2p_{3/2} \otimes \nu(1g_{9/2}^2 2p_{1/2}^{-2})$ configuration in the ground state of ⁶⁹Cu, can produce a branch to the ground state in the decay of ⁶⁹Ni^{m1}. Using the upper limit of 36% obtained for this β branch, a 15% 2p-2h (two particle-two hole) mixing within the ground state of ⁶⁹Cu may be deduced [2].

References

- 1. J.I. Prisciandaro et al., Annual Report 1998: National Superconducting Cyclotron Laboratory.
- 2. J.I. Prisciandaro et al., Phys. Rev. C 60, 054307 (1999).
- 3. W.F. Mueller et al., Phys. Rev. Lett. 83, 3613 (1999).
- 4. Table of Isotopes, 8th Ed., edited by R.B. Firestone (Wiley, New York, 1996).
- 5. R. Grzywacz et al., Phys. Rev. Lett. 81, 766 (1998).