# PROTON SCATTERING ON ${ }^{32,34}$ Si IN INVERSE KINEMATICS 

Z. Hu, T. Glasmacher, M. Chromik ${ }^{a}$, P.D. Cottle ${ }^{b}$, R.W. Ibbotson ${ }^{c}$, K.W. Kemper ${ }^{b}$, H. Scheit ${ }^{d}$

When the first excited $\mathrm{J}^{\pi}=2^{+}$state ( $2_{1}^{+}$) of an even-even nucleus is discussed as a collective quadrupole excitation, it is usually assumed to be isoscalar. However, it has been demonstrated that differences can occur between the amplitudes of the motions of protons and neutrons in $2^{+}$states (for a brief review, see [1]). Such differences can be measured in a particular nucleus by comparing the matrix elements connecting the $2_{1}^{+}$state to the ground state determined by two different experimental probes. Madsen, Brown and Anderson [2] found that the comparison of a low energy ( $10-50 \mathrm{MeV}$ ) ( $\mathrm{p}, \mathrm{p}$ ) result to an electromagnetic matrix element is particularly sensitive to differences in the amplitudes of proton and neutron motion.

Differences in the proton and neutron motion are generally discussed in terms of the multipole matrix elements $\mathrm{M}_{n}$ and $\mathrm{M}_{p}$ for neutrons and protons, respectively. In a collective isoscalar state - that is, one in which the neutron and proton motions have the same amplitudes - the ratio $M_{n} / M_{p}$ is identical to $N / Z$. It has been found that $M_{n} / M_{p}$ deviates from this value for the $2_{1}^{+}$states of a number of nuclei, in particular those with a single closed shell, which have valence nucleons of one type but not the other [1].

In this context, the $\mathrm{N}=20$ isotope ${ }^{34} \mathrm{Si}$ is particularly intriguing and presents a unique challenge to nuclear models. The systematic behavior of the even- $\mathrm{A}, \mathrm{N}=20$ isotones is remarkable because ${ }^{32} \mathrm{Mg}$ appears to be well deformed, with the energy of its $2_{1}^{+}$state below 1.0 MeV , while ${ }^{34}$ Si behaves like a doubly magic nucleus with its $2_{1}^{+}$state at 3.3 MeV [3], even though it has only two protons more. Because $\mathrm{M}_{n} / \mathrm{M}_{p}$ is sensitive to shell closures, the determination of this property for the $2_{1}^{+}$states of both ${ }^{32} \mathrm{Mg}$ and ${ }^{34}$ Si would provide important insights on the shell structure of these two neighboring nuclei that are so surprisingly different in structure.
B.A. Brown [4] has calculated the value of $\mathrm{M}_{n} / \mathrm{M}_{p}$ for ${ }^{34}$ Si using the Wildenthal interaction, an interaction that has been demonstrated to have great predictive power near the line of stability. His predicted value, $M_{n} / M_{p}=0.26$, deviates severely from the $N / Z$ value of 1.43 for this nucleus. In fact, if this prediction is confirmed experimentally it will be the largest deviation of $M_{n} / M_{p}$ from $N / Z$ known in the entire chart of the nuclides. As such, a measurement of $\mathrm{M}_{n} / \mathrm{M}_{p}$ for ${ }^{34} \mathrm{Si}$ is an important test of the Wildenthal interaction for shell model calculations in the sd shell away from the line of stability.

Quadrupole collectivity in several even-A silicon isotopes around the $\mathrm{N}=20$ shell closure has been studied by R.W. Ibbotson et al. [5] by using in-beam Coulomb excitation. The $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{1}^{+} \rightarrow 2_{1}^{+}\right)$value of ${ }^{34} \mathrm{Si}$ was measured to be $85(33) \mathrm{e}^{2} \mathrm{fm}^{4}$, from which a deformation parameter $\beta_{2}=0.18(4)$ can be extracted.

The feasibility of performing proton scattering experiments ( $p, p^{\prime}$ ) in inverse kinematics with exotic beams and intensities of around $10^{4}$ counts/second has recently been demonstrated in a series of experiments $[6,7,8]$. In this report we present our results of measuring the cross section of the $2_{4}^{+}$state for ${ }^{34} \mathrm{Si}$ at $47 \mathrm{MeV} /$ nucleon, as well as for its even-A neighbor ${ }^{32} \mathrm{Si}$ at $42 \mathrm{MeV} /$ nucleon. The obtained $\beta_{2}$ values are then compared to those values extracted from the coulomb-excitation experiment [5], and thus the $\mathrm{M}_{n} / \mathrm{M}_{p}$ values are deduced.

Since this was a follow-on experiment, the setup used was essentially the same as that applied in the previous experiments [6,7,8]. A primary $80 \mathrm{MeV} /$ nucleon ${ }^{40} \mathrm{Ar}$ beam was provided by the K1200 cyclotron at the National Superconducting Cyclotron Laboratory, and impinged on a $367 \mathrm{mg} / \mathrm{cm}^{i}$ Betarget
located at the production-target position of the A1200 fragment separator [9]. The resulting beam was purified by using a $233 \mathrm{mg} / \mathrm{cm}^{2}$ aluminum wedge, and limited to a momentum spread of $\Delta \mathrm{p} / \mathrm{p}=1.5-3 \%$. The beam was then traced by using two parallel-plate avalanche counters (PPACs) [10]. A $3.6 \mathrm{mg} / \mathrm{cm}^{2}$ $\mathrm{CH}_{2}$ target was placed perpendicular to the beam direction. A $O^{\circ}$ detector, consisting of a thin and a thick fast plastic, was located downstream from the target, providing a $\Delta \mathrm{E}-\mathrm{E}$ separation of heavy projectile-like fragments from lighter reaction products. The final ${ }^{32} \mathrm{Si}$ and ${ }^{34} \mathrm{Si}$ beam intensities were measured to be $\sim 3 \times 10^{4}$ and $\sim 4 \times 10^{4}$, respectively.

For detecting the scattering protons, we used a group of 6 telescopes, which were positioned 28 cm from the target. Three telescopes were mounted with their centers at laboratory-frame angles of 76 and three were centered at $70^{\circ}$. The whole array covered laboratory angles between $65^{\circ}-80^{\circ}$, corresponding to a center-of-mass angular range of approximately $20^{\circ}-45^{\circ}$. Each telescope had $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ active area and consisted of a $300 \mu \mathrm{~m}$ thick Si-strip detector followed by a second $470 \mu \mathrm{~m}$ thick PIN diode detector and a 1 cm thick stopping CsI. The strip detector comprised 163 -mm-wide strips and was used to determine the laboratory angle of the scattered protons. Those protons stopped in the strip detectors were identified by time-of-flight. Higher-energy particles that punched through the first detector, were identified by their $\Delta E-E$ signal in Strip-PIN or PIN-CsI. Scattered protons were selected with a requirement that a heavy ejectile must survive the collision and be detected in the $0 \sim \Delta \mathrm{E}-\mathrm{E}$ plastic stopping detector.

Before measuring the ${ }^{34,32} \mathrm{Si}$ scattering, the experimental method was tested with the $35 \mathrm{MeV} / \mathrm{u}$ ${ }^{40} \mathrm{Ar}$ beam. In Fig. 1 the scattered proton data for ${ }^{40} \mathrm{Ar}$ and ${ }^{34,32} \mathrm{Si}$ are presented in the form of a lab-frame kinetic energy vs scattering angle spectra and compared to calculated kinematics curves. The energy of fast protons that punched through two Si detectors and stopped in CsI were deduced based on the energy loss in Si detectors. The abrupt structure around 10 MeV along kinematics lines is related to Csl thresholds. Scattering angles have been determined from Si-strip positions and beam tracking information. The primary source of angular uncertainty came from the angular acceptance introduced by the 3.1 mm strip size and the beam spot size. The latter, which is dominated by momentum acceptance of the beam, accounts for the obvious difference between ${ }^{40} \mathrm{Ar}$ and ${ }^{34} \mathrm{Si}$ in terms of the scattering-band widths.

The elastic-scattering angular distributions of ${ }^{40} \mathrm{Ar},{ }^{34} \mathrm{Si}$, and ${ }^{32} \mathrm{Si}$, Fig. 2, were obtained by projecting the contents of a contour in the excitation energy vs $\theta_{m}$ plane. The data were normalized to coupled-channel predictions using the ECIS code [11]. In the ECIS calculation the optical-model parameters for ${ }^{40} \mathrm{Ar}$ were taken from Ref. [12] and those for ${ }^{34} \mathrm{Si}$ and ${ }^{32} \mathrm{Si}$ are adapted from ${ }^{34} \mathrm{~S}$ and ${ }^{32} \mathrm{~S}$ [13], respectively.

Due to low statistics and insufficient angular resolution, it was impossible to obtain the ratios of elastic scattering to inelastic scattering to the $2_{1}^{\dagger}$ states from a gaussian fit to the excitation spectra for individual angular bins. Shown in insets of Fig. 1 are the excitation-energy spectra covering a center-ofmass angular range of $4^{\circ}$. The angular distributions of the $2_{1}^{+}$states, Fig. 2 , were obtained by selecting the $2_{1}^{+}$states in the excitation energy vs $\theta_{c m}$ plane. This process may be slightly inaccurate because of the overlap of the ground state with the $2_{1}^{+}$state distribution, see insets of Fig. 1. However, this problem was alleviated by normalizing the summed counts to those obtained from a gaussian fit to the excitation spectrum for the corresponding angular range.

The $\chi^{2}$ of the coupled-channel predictions for the $2_{1}^{+}$states with respect to the experimental angular distributions was minimized to extract the $\beta_{2}$ values. For ${ }^{40} \mathrm{Ar}$ we obtained a $\beta_{2}$ value of $0.27(5)$ which agrees with the previous results of $0.24-0.26$ [14] and $0.29(3)$ [6]. In case of ${ }^{34} \mathrm{Si}$ and ${ }^{32} \mathrm{Si}$, the


Figure 1: Scatterplot of energy vs angle for recoiling protons from ${ }^{40} \mathrm{Ar}\left(\mathrm{p}, \mathrm{p}\right.$ ) (upper panel), ${ }^{34} \mathrm{Si}(\mathrm{p}, \mathrm{p}$ ) (middle panel), and ${ }^{32} \mathrm{Si}\left(\mathrm{p}, \mathrm{p}\right.$ ) (lower panel). The data were taken with three telescopes centered at $76^{\circ}$ with respect to the beam direction. The solid curves show the calculated kinematics for the ground states, the dash curves for the $2_{1}^{+}$states. In inserts are plotted the excitation-energy spectra for the center-of-mass angular range of $20.0^{\circ}-20.0^{\circ}$ for ${ }^{40} \mathrm{Ar}, 21.0^{\circ}-25.0^{\circ}$ for ${ }^{34} \mathrm{Si}, 22.0^{\circ}-26.0^{\circ}$ for ${ }^{32} \mathrm{Si}$. Due to the asymmetric shapes, gaussian fits are performed to the higher excitation-energy part of the peaks.


Figure 2: Angular distributions for proton scattering off the ground state and the $2_{1}^{+}$state for ${ }^{40} \operatorname{Ar}(\mathrm{p}, \mathrm{p}$ ) (upper panel), ${ }^{34} \mathrm{Si}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ (middle panel), and ${ }^{32} \mathrm{Si}(\mathrm{p}, \mathrm{p}$ ) (lower panel). The solid squares and the solid triangles represent the elastic-scattering data extracted from the three telescopes centered at $76^{\circ}$ and $70^{\circ}$ with respect to the beam direction, respectively. The solid circles show the inelastic-scattering data drawn from the three telescopes centered at $76^{\circ}$ with respect to the beam direction. The coupled-channel calculations for elastic scattering (solid lines) and inelastic-scattering (dash-dotted lines) are plotted for comparison.

Table 1: The $2_{1}^{+}$states for ${ }^{40} \mathrm{Ar},{ }^{34} \mathrm{Si}$, and ${ }^{32} \mathrm{Si}$. The excitation energies are adopted from Ref. [15]. The $\beta_{2}(\mathrm{e} . \mathrm{m}$.) values are from Ref. [5]. The $\beta_{2}(\mathrm{p}, \mathrm{p}$ ') values are from this work.

| Isotope | $\mathrm{E}(\mathrm{MeV})$ | $\beta_{2}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ | $\beta_{2}(\mathrm{e} . \mathrm{m})$. | $\left(\mathrm{M}_{n} / \mathrm{M}_{p}\right) /(\mathrm{N} / \mathrm{Z})$ |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{40} \mathrm{Ar}$ | 1.46 | $0.27(5)$ | $0.27(2)$ | $0.97(19)$ |
| ${ }^{34} \mathrm{Si}$ | 3.33 | $0.20(3)$ | $0.18(4)$ | $1.11(30)$ |
| ${ }^{32} \mathrm{Si}$ | 1.94 | $0.31(4)$ | $0.26(4)$ | $1.22(24)$ |

$\beta_{2}$ values of $0.20(3)$ and $0.31(4)$, respectively, were extracted, which is the first time these values were measured by using a ( $\mathrm{p}, \mathrm{p}^{\prime}$ ) method.

In Table1 we compiledeformation parameters for ${ }^{40} \mathrm{Ar},{ }^{34} \mathrm{Si}$ and ${ }^{32} \mathrm{Si}$. Notethat within experimental uncertainties the $\beta_{2}$ values obtained from ( $\mathrm{p}, \mathrm{p}$ ) reaction are in agreement with those values extracted from coulomb excitation. As mentioned above, a difference between electromagnetic and hadronic values can be related to different proton and neutron vibration amplitudes through the study of multipole-transition matrix elements $\mathrm{M}_{n} / \mathrm{M}_{p}$. The $\mathrm{M}_{n} / \mathrm{M}_{p}$ ratios were calculated using the formula derived in Ref. [1]. They are presented in Table 1 with respect to $N / Z$ ratios. For the three isotopes studied here, within experimental uncertainties, the $M_{n} / M_{p}$ values are identical to the $N / Z$ ratios. This can be accounted for in an isoscalar model where protons and neutrons participate equally in the excitation of the nucleus.

Since ${ }^{34}$ Si has a shell closure of $N=20$, it is interesting to compare the experimental result to a model calculation. The shell-model calculation [4] using the Wildenthal interaction, which predicts a $\mathrm{Mn} / \mathrm{Mp}$ value of 0.26 , is obviously not valid here. However, the calculation expects a $\beta_{2}$ value of 0.16 associated with proton-scattering experiment, which agrees with the value we measured. What can cause the problem, is that the Wildenthal interaction yields an electromagnetic $\beta_{2}$ value which is too large. It is interesting to note that Kelley et al. [6] compiled the deformation parameters for ${ }^{36} \mathrm{~S}$, the $\mathrm{N}=20$ isotone of ${ }^{34} \mathrm{~S}$. They noticed that in view of the low $\beta_{2}$ value and high excitation energy of the $2_{1}^{+}$state of ${ }^{36} \mathrm{~S},{ }^{36} \mathrm{~S}$ exhibits features akin to those of a well closed nucleus. Our work indicates that this conclusion applies to ${ }^{34} \mathrm{Si}$ as well.

This work was supported by the U.S. National Science Foundation under grant PHY-9528844.
a. Sektion Physik der LMU Munchen, Am Coulombwall 1, D-85748 Garching, Germany
b. Department of Physics, Florida State University, Tallahassee, F Iorida 32306
c. Department of Physics, Brookhaven National Laboratory, Upton, NY 11973
d. Max Planck Institut fur Kernphysik, D-69029 Heidelberg, Germany

## References

1. A.M. Bernstein, V.R. Brown and V.A. Madsen, Comm. Nucl. Part. Phys. 11, 203 (1983).
2. V.A. Madsen, V.R. Brown and J.D. Anderson, Phys. Rev. C12, 1205 (1975).
3. P. Baumann et al., Phys. Lett. B228, 458 (1989).
4. B.A. Brown, private communication (1994).
5. R.W. Ibbotson et al., Phys. Rev. Lett. 80, 2081 (1998).
6. J.H. Kelley et al., Phys. Rev. C56, R1206 (1997).
7. L.A. Riley et al., Phys. Rev. Lett. 82, 4196 (1999).
8. F. Marechal et al., Phys. Rec. C60, 034615 (1999).
9. B.M. Sherril et al., Nucl. Instrum. Meth. Phys. Res. B70, 298 (1992).
10. D. Swan et al., Nucl. Instrum. Meth. Phys. Res. A348, 314 (1994).
11. J. Raynal, Phys. Rev. C23, 2571 (1981).
12. E. Fabrici et al., Phys. Rev. C21, 830 (1980).
13. R. Alarcon et al., Phys. Rev. C31, 697 (1981).
14. R.DeLeo et al., Phys. Rev. C31, 363 (1985).
15. P.M. Endt, Nud. Phys. A521, 1 (1990).
