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The interplay of regular and chaotic features in many-body quantum dynamics is currently
extensively studied both for simple models and for realistic applications to atomic, nuclear [1], and
condensed matter physics , as well as for understanding properties of the QCD vacuum . Typical finite
‘‘shell-model’’ systems, such as complex atoms and nuclei, are described by a mean field and corresponding
residual interactions. If there are exact conservation laws the spectra are divided into classes, and one
usually deals with the states of each class separately. However, little attention was paid to the problem of
correlations between classes of states which are described by the same Hamiltonian but belong to different
values of exact integrals of motion.

An obvious and practically important example is angular momentum conservation in a finite
Fermi-system. The prediagonalization procedure of projecting the correct value J of nuclear spin out of
the m-scheme Slater determinants induces by itself a strong mixing of the states within a shell model
configuration [1]. The projected states of various spins acquire a nearly uniform degree of complexity and
energy dispersion. For a sufficiently large dimension, the majority of states correspond to a complicated
quasi-random coupling of individual spins. This ‘‘geometric chaoticity’’ was used long ago in evaluating the
level density for a given J .

A new angle of looking at the problem was introduced by refs. [2, 3] where the spectrum of a
random but rotationally invariant Hamiltonian was obtained for a shell-model Fermi system. In spite
of the random character of the two-body interaction, the fraction f0 of the ensemble realizations with a
ground state spin J0 = 0 was much higher than the total statistical fraction fs0 of J = 0 states in shell-model
space. This result was confirmed as well as for the interacting boson model. A newly-discovered feature
was an excess of the probability fJmax for the ground state to have the maximum possible spin Jmax.
The emergence of regular features as a result of a random interaction seems to contradict the notion
of geometrical chaoticity. Below we show that, vice versa, the geometric chaoticity provides a base for
explaining the main features of the pattern.

First we give a couple of trivial examples which point out the possible source of the effects, namely
an analog of the Hund rule in atomic physics. Consider a system of N pairwise interacting spins with the
Hamiltonian

H = A
X
a6=b

sa � sb = A[S2 � Ns(s + 1)]: (1)

If the interaction strength A is a random variable with zero mean, then the ground state of the system
will have equal, f0 = fSmax = 1=2, probabilities to have spin S = 0 or S = Smax (antiferromagnetism or
ferromagnetism).

Let us consider a system of interacting fermions. For simplicity we limit ourselves here to a case of
N identical particles on a single-j shell which provides a generic framework for the extreme limit of strong
residual interaction. Rotational invariance is preserved, so that all single-particle m-states are degenerate
in energy. Within this space, the general two-fermion rotationally invariant interaction can be written
as H =

P
L� VLP

y
L�PL�, where the pair operators with pair spin L and its projection � are defined as
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mnanam and C are the Clebsch-Gordan coefficients. Because

of Fermi statistics, only even L values are allowed in the single-j space. Assuming that the coupling
constants VL are random, uncorrelated and uniformly distributed between -1 and 1, we get the distribution
fJ of the ground state spin J0 shown in Fig. 1(a{e) for N = 4 and N = 6 at different values of j. For
comparison we show by dotted lines the statistical distributions fsJ based on the fraction of states of given
J in the entire Hilbert space for given N . The overwhelming probability f0 shows the same phenomenon
in the uniform ensemble as observed earlier in Gaussian ensembles of VL [2, 3]. Further evidence of
the dominance of J0 = 0 configurations is given by the example, Fig. 1 (e) , for an odd number of
particles, where excess of the ground state spin J0 = j is evidently related to the ground spin J0 = 0 in the
neighboring even system.

First we note that the effect seems to exist already in a crude approximation modeling fermionic
pairs by bosons. The commutation relations for the fermion pair operators are (L and L0 are even),

[PL0�0 ; P y
L�] = �L0L��0� + 2

X
mm0n

CL
0�0

m0n C
L�
nma

y
mam0 : (2)

The second term in (2) is of the order N=
 where 
 is the capacity (= 2j + 1 in our case) of the fermionic
orbitals. It is small for a small number of fermions; for a nearly filled shell its effect is also small because
of the particle-hole symmetry of states. For intermediate shell occupation this term is not small but can
be approximately substituted by its mean value (the monopole part with spin K = 0). Then, after a simple
renormalization, PL� become bosonic operators, and the Hamiltonian becomes a sum of random bosonic
energies

P
L� !LnL�. The ground state in each realization corresponds to the condensation of the bosons

into the single-boson states jL�) with the lowest value of !L. For a given L, the many-boson states with
different J allowed for the condensate are degenerate, but the value L = 0 is singled out by the obvious
fact that for !0 =min all degenerate states have total spin J = 0 while for the minimum boson energy
!L at L 6= 0 any specific value of J , including J = 0, appears only in a small fraction of states. If all VL
have the same distribution, we expect fb0 � 1=k where k is a number of (equiprobable) values of L. All
other values J 6= 0 appear with small probabilities � 1=k2. This is demonstrated by Fig. 1(f) where the
pattern is qualitatively similar to that in Fig. 1(a{e). The bosonic effect gives only a part (decreasing with
increasing j) of the J0 = 0 dominance observed for the fermions. Another argument against the dominance
of the bosonic correlations is given in Fig. 1(c). Here we see that after exact elimination of the monopole
term (VL=0 � 0), the picture does not significantly change although the value V0 is now the lowest only in
a small fraction, � 2�(k�1), of all cases (when all VL6=0 are positive).

In our opinion, the main effect comes from the statistical correlations of the fermions. They resolve
the bosonic degeneracy in favor of the J = 0 and J = Jmax ground states. In the strong mixing among nearly
degenerate states, the eigenstates emerge as complicated chaotic superpositions. The only constraints left
are the conservation laws for the particle number and total spin. The latter can be taken into account by
the standard cranking approach . Thus, we model the system by the Fermi-gas in statistical equilibrium
with the occupation numbers nm of individual orbitals characterized by the angular momentum projection
m onto the cranking axis. The presence of the constraints creates a ‘‘body-fixed frame’’ and splits effective
quasiparticle energies, although instead of the collective rotation around a perpendicular axis we have
here a random coupling of individual spins with the symmetry (cranking) axis being the only direction
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Figure 1: The distribution of ground state angular momenta for various systems of N fermions of spin j, (a{
e).The bosonic approximation, fbJ is in panel (f). The dotted lines are the statistical distribution of allowed J
and the solid lines are the ensemble results. In (c) the dashed line is for V0 = 0, i.e. no pairing.

which is singled out in the system. Under the constraints

N =
X
m

nm; M =
X
m

mnm; (3)

equilibrium statistical mechanics leads to the Fermi-Dirac distribution

nm =
1

exp(m � �) + 1
(4)

determined by the Lagrange multipliers of the chemical potential � and cranking frequency ; in the end
the total projection M (equivalent to the K quantum number for axially deformed nuclei) is identified with
the total spin J .

The quantities �(N;M ) and (N;M ) can be found directly from (3).With no cranking, one has the
uniform distribution of occupancies n0m = �n = N=
. With the perturbational cranking, the occupation
numbers are

nm = �n

�
1� m(1 � �n) +

2

2
(m2 � hm2i)(1� �n)(1� 2�n) + � � �

�
: (5)

Here hm2i = (1=
)
P

mm2 = j2=3, and terms of higher orders are not shown explicitly. The expectation
value of energy in our statistical system can be written ashHi =

P
L�m1m2

VLjC
L�
m1m2

j2hnm1
nm2

i. Neglecting
the correlations between the occupation numbers, hnm1

nm2
i � nm1

nm2
, we use the statistical result (5)

and calculate the geometrical sums with the Clebsch-Gordan coefficients. Expressing the parameter  in
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terms of the total spin M ! J , we come to the result including the terms of the second order in J2,

hHiN;J =
X
L

(2L + 1)VL[h0(L) + h2(L)J
2 + h4(L)J

4]; (6)

where

h0(L) = �n2; h2(L) =
3

2

L2 � 2j2

j4
2
; (7)

h4(L) =
9

40

(1 � 2�n)2(3L4 + 3L2 � 12j2L2 � 6j2 + 8j4)

(1� �n)2N2
2j8
: (8)

J0 is determined by the ensemble distributions of h2;4 =
P

L(2L + 1)VLh2;4(L): For all realizations
of the random interaction with non-negative h2 and positive h4, the ground state has spin J0 = 0. If
h2 > 0 but h4 < 0, one has a local minimum of energy at J = 0 although there is a possibility to reach the
absolute energy minimum at Jmax = (1=2)N (
 � N ). This will not happen if at J = Jmax we still have
h2 + J2maxh4 > 0. In short, f0 should be close to 50%, and fJmax should be a little less then 50%.

To conclude, we have shown that statistical correlations of fermions in a finite Fermi system with
random interactions drive the ground state spin to its minimum or maximum value. This effect is related
to the geometrical chaoticity of the random spin coupling of individual particles. This means, that the
dominance of 0+ ground states in even-even nuclei may at least partly come from incoherent interactions
rather than solely from coherent pairing. The structure of ground states with an ‘‘antiferromagnetic’’ type
ordering, J0 = 0, is compatible with the predictions for chaotic dynamics. Quantitative relations between
the effects of geometric chaoticity and pure dynamic effects in finite many-body systems should be an
interesting subject for further detailed studies.
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