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In large amplitude nuclear collective motion the usual methods such as time-dependent mean-field
or consideration of collective motion as a diffusion-like sequence of hoppings between different configu-
rations [1] are not suitable for describing the individual stationary states. However, this spectroscopic
problem emerges if a finite system has a soft collective mode. As the corresponding frequency ! goes to zero,
a macroscopic system becomes unstable approaching the second order phase transition. In the vicinity of
the transition the mean field manifests large scale fluctuations which dominate critical dynamics. In finite
systems as nuclei or atomic clusters, phase transitions are smeared away. However, the very existence of
the soft critical mode influences all observable properties. Typical example of such situation are low-lying
quadrupole vibrations in transitional nuclei, that in such regions have neither static deformation nor well
developed rotational band structure. Serious violations in the harmonic scheme along with microscopic
arguments of rather general type [2] show that instead of the second order phase transition one should
expect strong quartic anharmonic distortion of the potential as a function of the quadrupole coordinate. At
the instability point of the Random Phase Approximation (RPA) which would indicate the phase transition
in an infinite system the global stability is restored by quartic anharmonicity. The possible presence of
a rather small maximum at zero deformation is not expected to create a deformation but is a cause of
-instability [3]. Phenomenological models based on the picture of strong quartic anharmonicity turned
out to be quite successful in reproducing regularities of experimental energies and transition probabilities
for dozens of soft nuclei [4, 5, 6].

The goal of this work is to find the regular way for constructing the correct collective hamiltonian
for the soft mode dynamics and calculating its parameters from the microscopic theory. Such a hamiltonian
does exist if the low-lying states are known to be associated with the soft mode, as is presumably the case
in transitional nuclei. The hamiltonian sought for is effective in the sense that all other degrees of freedom
are projected onto the Hilbert space generated by the soft mode. Such an approach is used for macroscopic
second order phase transitions. The difference is that here we need to get a complete quantum hamiltonian
including the collective kinetic energy rather than free energy as a function of the order parameter only.
On the other hand, our theory for a finite system can avoid scaling and renormalization problems.

Our projection formalism is based on identifying the form of the generalized density matrix (GDM)
R12 = ay2 a1 in terms of collective variables (coordinate � and momentum �) and simultaneously mapping
the dynamical evolution arising from the collective hamiltonian
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to the microscopic equations of motion. This dynamical mapping along with kinematical properties of the
GDM allows for the determination of the parameters � of the collective hamiltonian (1).

In the lowest order of mapping we obtain the Hartree-Fock equation relating the static mean field
to the distribution of particles, while next (linear) order in collective variables reproduces the RPA. The
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Figure 1:
Left: Plot shows the relative importance of collective frequency ! and non{zero anharmonic terms �(4;0) =
�(4;0)=4!3 and �(0;4) = �(0;4)!=4 ; in the LMG model with 20 particles. The logarithmic ordinate axis is plotted
in the energy scale, that can also be compared to the distance between levels � = 1 :
Right: The spectrum of �rst �ve excited collective states relative to the ground state in the LMG model with 20
particles. Solid line shows the exact solution, dotted line is RPA and dashed line anharmonic oscillator solution.
In the latter the anharmonicity part with �4 was ignored.

complication that one encounters is that each term experiences a renormalizing correction from the higher
orders. For example, the renormalizing field fluctuations at the RPA level effect the particle distribution
and Hartree-Fock mean field at the zeroth level of approximation. The self-consistent solution of all
equations is quite complex even at low orders.

As a first test we have analyzed anharmonicities and their effects in the two-level Lipkin-Meshkov-
Glick (LMG) model [7]. The special feature of this problem is that it has an intrinsic kinematically defined
collective mode and a lot of symmetries in the Hamiltonian that reduce considerably complications
associated with the exact solution. Fig. 1, left panel, shows the determined anharmonic terms in this
model as a function of the interaction strength. It is clearly seen that when the RPA frequency goes to zero
the quartic anharmonicity �(4 0) becomes extremely important.

In the right panel of Fig. 1 we present a comparison of the exact LMG model spectrum (solid lines),
RPA solution (dotted lines), and an improved anharmonic oscillator solution with the ignored divergent �4

part. Introduction of an anharmonic term in this example produces a dramatic improvement as compared
to RPA; the agreement of exact and approximate solutions is quite remarkable.

The further study of anharmonicities of quadrupole modes in separable models and in realistic
systems is in progress.
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