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Pairing correlations play an important role in nuclear structure determining an essential contri-
bution to binding energy, odd-even effects, single-particle occupancies, quasiparticle excitation spectrum,
radiation and beta-decay probabilities, transfer reaction amplitudes, low-lying collective modes and mo-
ments of inertia [1, 2, 3]. The revival of interest to pairing correlations is related to studies of nuclei far
from stability and predictions of exotic pairing modes [4]. Metal clusters, organic molecules and Fullerenes
give another example of finite Fermi systems with possibilities of pairing correlations of superconducting
type [5].

The conventional description of pairing in small systems usually employs the classical BCS [6]
approach used in theory of superconductivity. This approximate solution has a very good accuracy for
large systems and becomes exact in the asymptotic limit [7]. The major drawback of the BCS is the
violation of particle number conservation, which gives rise to deviations from the exact solutions for small
systems. Various ideas were suggested to correct this deficiency, such as the direct particle projection
technique [8], number projection mean-field methods [9, 10], statistical description [11], and taking into
account the residual parts of the Hamiltonian in the random phase approximation [12]. These methods
have found only a limited number of practical applications; for some approaches the obtained results did
not manifest the desired accuracy whereas for other methods the complications turn out to be almost on
the same scale as for the exact solution by diagonalization. The Richardson method, described in the
series of papers [13], provides a formally exact way of solving the pairing Hamiltonian with a constant
effective pairing force. This method reduces the large-scale diagonalization of a many-body Hamiltonian
in truncated Hilbert space to a set of coupled equations of a dimension equal to the number of valence
particles. Recently, exact solutions have been approached by introducing sophisticated mathematical tools
such as infinite-dimensional algebras [14]. Nevertheless the numerical complications currently limit the
scope of applicability and the need for a good approximate theory still persists, especially because it can
provide us with a convenient basis for calculating the effects of other parts of the residual interaction.

The goal of our work is to study a nuclear pairing problem with a particle conserving variational
approximate solution that is formulated in the form of a recurrence relation in the number of particles N .
For each step it is required to solve equations for only two variables, energy gap and chemical potential, as
a function of the exact particle number, and thus even for large N the numerical procedure is quite fast.
By making additional approximations this solution can be reduced to the BCS. The idea of the method goes
back to the old papers [15, 16] and to the work [17] where the set of exact operator equations of motion
was formulated by introducing the gauge angle conjugate to the particle number as a collective variable.
In discrete space the corresponding equations are of recurrent type; the method was applied [17] to the
so-called pairing rotations (a systematic change of pair separation energy). We construct an algorithm for
the solution of recurrence relations derived from operator equations of motion with exact particle number
conservation at each stage. In the well known degenerate model the solution coincides with the exact
one. In a model with equidistant single-particle levels, our particle-conserving solution is compared to the
exact solution and BCS solution, and an improvement over the BCS is observed. Finally, tin isotopes are
considered as a realistic example, see figure 1. The exact calculations are based on the Nijm-I G-matrix
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Figure 1: Correlation energy of tin isotops as a function of a number of holes in the shell. Particle conserving,

BCS and exact solution from OXBASH are compared. Diamonds show the exact calculations with interactions

in all momentum channels being included.

[18]. In our future work we intend to further investigate the particle conserving algorithm, study the
weak coupling limit near the BCS breakdown and consider odd-particle systems with possible inclusion of
higher seniority states in the formalism. Development of computer codes that would allow us to quickly
account for pairing in all nuclei presents an important technical task. Questions of current interest such
as isovector pairing and proton-neutron pairing effects can be viewed as possible promising avenues in the
same direction.
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