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6He is a good system in which to study the phenomena of dripline nuclei because of its tight α-core
and because the underlying α-n interaction is well known.  In our experiment a beam of  6He with E/A = 25.2
MeV and intensity ~ 104/s was delivered to targets of U, Pb, Sn, Cu, Al and C.  Coincidence measurements
of neutrons [1] and fragments [2] were made with the same equipment shown in Fig. 2 of the report by
Horváth et al. on page 99.  The magnet deflected unreacted 6He beam particles to a place (the E detectors)
where neutrons produced as they stopped were not all directed at the neutron walls and where a shield could
be interposed between them and the walls.  The E detectors were 16 scintillator bars with PMTs at their ends.

Fig. 1.  Light output distributions in scintillator bars 3-14 for the U target.  The sharp peak in Bars 3-8 are unreacted 6He
projectiles.  The broad peak in Bars 8-14 are α-particles.  Note the different intensity scales

Figure 1 shows the pulse height spectra in 12 of the 16 scintillator bars in coincidence with a
neutron.  The sharp peaks around channel 250 are from unreacted 6He projectiles in accidental coincidence
with neutrons.  Most of these events are in Bars # 5 and 6.  Coincidence with a neutron has reduced the
number by almost a factor of 1,000.  The bar number increases with deflection angle, and starting with Bar
#8 we see the lower rigidity α -particles increase in intensity to a maximum in Bar #11 and then fall off.
Kinematic spread in 6He breakup is the main cause of the width of the α-particle peaks.  It is easy to count
the number of α-particles in spite of the fact that they are only ~ 10-4 of the particles entering the magnetic
field.

n2−σ , nuclear & Coulomb
From the integrated α-particle counts in Bars 8-14 and 6He counts in Bars 3-8 we determined the

relative values of 
n2−σ .  To get absolute values, we normalized the Al value to 

n2−σ of 6He on Si measured
by Warner et al. [3] to be 0.46 ±  0.06b.  All of the 

n2−σ  values are shown in Fig. 2.  To extract the
Coulomb parts we used the expected nuclear and Coulomb dependencies on A and Z,
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and made the least-squares fit shown in the figure.  For U and Pb the Coulomb part accounts for more than
half of the total 2-n removal cross section of 6He.

Fig. 2. Total 2n removal cross sections for the six targets.  Points are the experimental data.  Solid curve is a fitting
model to extract the Coulomb part of the cross section, as in Eq. 1.

P||  Distributions & halo radius
The parallel momentum distributions for neutrons and α-particles are all well fitted by Gaussians.

Figure 3 shows the σ values of the Gaussians plotted against the Z of the target.  It can be observed that the

Fig. 3. (top) Widths of α-particle (open points) and neutron (filled points) parallel momentum distributions for the six targets.
(bottom) Ratio of the above widths compared to 2  and  to 2.0.

 widths of both the neutron and the α-particle distributions decrease with the size of the target.   The decrease
may be attributed to the breakdown of the sudden approximation when the long-range Coulomb interaction



makes a significant contribution to the breakup.  Theα-particle distribution obtained with the C target should
most reliably give the distribution within 6He.  The width σ = 40.2±2.3 MeV/c of this momentum distribution
determines the rms radius of its Fourier transfom space distribution <r2>_ = 2.95 ± 0.17 fm.   The rms radius
of the entire neutron matter distribution has been determined from 6He interaction cross sections to be
2.59±0.04 fm [4] and 2.61±0.03 fm [5].  Our value for the halo neutrons alone is larger by 0.35± 0.17 fm.

Correlation of the halo neutrons
If the two halo neutrons in 6He are correlated in their motion, for example, by having the same space

coordinates or by sitting on opposite sides of the α -particle, sudden dissociation of 6He will send the α -
particle in one direction and the two neutrons in the opposite direction.  In either of these “dineutron”
pictures the angle θnn between the neutrons will be zero.  We have two methods, using independent sets of
data, with which to look for a correlation.

One method applies conservation of momentum to the momentum distributions of the preceding
section.  Conservation of momentum requires the momentum of the α-particle in 6He to be balanced by the
momentum of the two neutrons.  It follows then that the widths of the α-particle and neutron distributions
should be related.  Applying the law of cosines to the triangle formed by the three momentum vectors gives

2p(n1)•p(n2) = p_
2 – [pn1

2 + pn2
2]. (2)

Averaging and noting that Gaussians have <px
2> = <py

2> = <pz
2> =σ2 so that <p2> = 3σ2 gives

< p(n1)•p(n2)> = 1.5(σα_
2 – 2σn

2). (3)

We use Eq. 3 for two special cases:  Case 1. If the two neutrons are a dineutron, p(n1) = p(n2), the left side
becomes <pn

2> = 3σn
2, and σα_ = 2σn.  Case 2. If the two neutrons are not correlated, then   
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and σα_ = √2σn.  The values of σα_/σn for the six targets and for the two special cases are shown in Fig. 3b.
Case 1, where θnn = 0, and σα_/σn = 2, is not supported by Fig. 3b.  The data fluctuate near, but not around,
the uncorrelated value, √2.  So the halo neutrons are not completely uncorrelated.

In the other method we look directly at the θnn, or the cos(θnn), distribution function.  The events in
this set are sparse since each event has an α -n-n triple coincidence.  The measured cos(θnn) distribution
functions for the six targets are statistically equivalent.  To reduce the fluctuations we summed the
distributions, and that sum is shown in Fig. 4.  The response of the detection system distorts the true cos θnn

Fig. 4. Distribution of angle between the two neutrons from 6He breakup.  Points are from 2n-α coincidence events for
the six targets used in the experiment.  The angle was calculated in the 2n + α  center-of-mass frame.  Histograms result
from Monte-Carlo simulations—solid: 3-bodyphase space model, dashed: dineutron model.



distribution.  For example, the solid-angle acceptance of the system favors breakups with small values of θnn.
To take that response and other geometry effects into account in comparing two theoretical models with
experiment, we folded those effects with each theoretical cos(θnn) distribution in a Monte-Carlo simulation.
The dashed histogram in Fig. 4, which is for the dineutron model, is strongly forward peaked; without the
detector response it would be a delta function at cos(θnn) = 1.  The solid histogram in Fig. 4 is for the 3-body
phase space model.  This model is meant to give the opposite extreme, where the two neutrons are
uncorrelated.  In fact, momentum conservation and α-particle recoil force a correlation in which the average
value of cos(θnn) is somewhat less than 90˚ [6].  (In this model σα_/σn < √2)  As in Fig. 3b for σα_/σn, the
dineutron model is not favored by the cos(θnn) data of Fig. 4, but there is tendency towards it.  This may be
evidence for the hybrid model [7], a model in which the two valence neutrons of 6He stay in shell model
orbits when they are close to the core, but form a cluster (dineutron) when they are far from the core.  If the
6He nucleus breaks up when the neutrons are far from the core, the neutrons tend to be strongly correlated.  If
the 6He breaks up when the neutrons are close to the core, the neutrons tend to be uncorrelated.

Dipole strength function
On the first page of this report we saw that with targets of Pb and U most of the 2-n removal cross

section of 6He is Coulomb induced.  For each such event the final-state kinematics gave us the decay energy
Ed and, therefore, the energy of the photon absorbed, resulting in some information on the dipole strength
function dB(E1)/dEx through the following relation [8] to the measurable spectral function dσE1/dEd.

In this equation Eγ = Ex = S2n + Ed, and nE1(Eγ) is the number of equivalent E1 photons with energy Eγ

surrounding the target nucleus.  For 6He the value of S2n is 0.975 MeV.  The function dσE1/dEd differs from
the measured spectral function in two respects.  The measured function contains distortions introduced by the
detection system, and it contains both Coulomb and nuclear contributions.  In computer simulations using the
detector response function, the distortions were removed.  Figure 2 shows that for the U target 2/3 of σ-2n, or
1.25 b, is Coulomb induced.  We used this value to normalize the dipole strength function determined with
the U target, and we assumed that the shape of the function was not significantly altered by the nuclear part.
The result is shown in Fig. 5, where the shaded area gives the range allowed by the statistical uncertainty in.
The function agrees with that determined by Aumann et al. [9] using 6He at 240 MeV/nucleon.The dashed
curve [10] in Fig. 5. comes from a 3-body model [11] based on hyperspherical harmonics and the coordinate-
space Faddeev approach.  The dot-dashed curve was derived from a model [12] in which dB(E1)/dEx is
derived from the E1 strength function for one-neutron halo nuclei [13].  The experiment and the calculations
agree that there is a strong concentration of E1 strength at low energy, Ed  ∼  1 – 2.5 MeV.
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Fig. 5. Dipole strength function.  Shaded area determined from the U data.  Dashed curve [10, 11] and dot-dashed [12,
13] model predictions, both normalized to the experimental function.
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