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1 Introduction 
 For general, high-current beam distributions within arbitrary conducting chambers, numerical recipes 
such as grid Poisson solvers are required to find the space charge forces.  Though this method can be used for 
any beam shape or conducting chamber geometry, the goal of the approach discussed here is to have much 
faster but nearly as accurate results appropriate for a large class of beam distributions within relatively 
simple conducting boundaries. 
 The main concept of the template potential algorithm is a representation of the beam as a sequence of 
discrete objects or templates. For the three-dimensional (3D) case, these templates are charged disks or 
slices, and the total beam potential is found by superposition of the individual slice potentials.  For the two-
dimensional (2D) case charged cylinders are used as templates. 
 Generalizations of the template potential method now allow the appropriate simulation of the space 
charge effects for large classes of accelerator configurations [3].  The template method for 2D beams has also 
been used to extend the rms-envelope equations to include the image forces of a conducting boundary. The 
new models have been verified by comparison with general 3D grid field solvers and particle-in-cell (PIC) 
codes.  
 
2 SLICE algorithm for 3D beam 
 With transverse rms-matched charge distributions based on the concept of equivalent beams [4], a 
large class of 2D charge density distributions that depend on transverse coordinates (x,y) and a parameter p 
may be represented: 
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where  xm(p), ym(p) are transverse beam sizes. See Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Charge densities σ(r,p) as a function of r for p≥0, Gaussian  (p=∞) and hollow (p=−0.5) beams. 
 
For cases with p>0 the density is maximal at the beam center with the charge density going to zero near the 
beam edge. The case with p=0 corresponds to a constant charge density and with p<0, more exotic beam 
distributions such as a hollow-beam may also be represented. The distribution function f(x,y,x′,y′,p) also 
depends on the parameter p, so the rms beam size is obtained by: 
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2.1 Rms-matched 2D slice charge densities 

For the case of a round beam, )(2,1 pI  can be written: I1(p) = σ m(p) r2 cos2 ϕ
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Due to the axial symmetry the same expression is valid for the vertical rms-size. Noting that 
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where )0(mσ  is the density for the uniform distribution. 
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  one obtains the 2D Gaussian distribution: ),()( ∞= rrEXP σσ  with 

a standard deviation >< 2x .  The charge densities plotted in Fig. 1 show the considerable range of possible 
charge distributions varying from conventional shapes p > 0 to singular ones p < 0 (hollow beam).  All 
densities are rms-matched, i.e. <x2>(p) = <y2>(p) for any p. 
 
2.2 Elliptical 2D rms-matched charge densities and longitudinal (z) line charge density. 
 
The 2D elliptical slice. For }1// :),{( 2222 ≤+ yx ayaxyx  with semi-axes )( sra mx χ= , )(1 sra my

−= χ  and aspect 

ratio χ ≠ 1.  Instead of (3) we obtain: 
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A generalization in (z) direction. Since a uniform line charge density ( constant)( ≡zλ ) of a bunched beam is 
not particularly physical having a singularity in the field derivative zEz ∂∂ /  at the bunch edges, to 

analytically describe more physical situations, we introduce a line density function Λ(z).  Though Λ(z) may 
be any function, in practice, we limit ourselves to a family of functions of the form )()( 0 zz λλ ⋅=Λ  where 

)(zλ  has a maximum value of 1 and is zero at the bunch ends ( mzz ±= ).  The parameter 210 / JJ=λ  provides 

the normalization where J1 = dz σ (x ,y,z, p)dxdy∫∫ and J2 = λ(z)dz σ (x, y, z, p)dxdy∫∫ .  1J  corresponds to 

the total charge with the z dependence from ),,,( pzyxσσ =  via ),( pzrr mm = .  
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2.3 Calculation of 3D beam potential 
Following the technique of references [1-3] the potentials of individual slices of different sizes and aspect 
ratios are computed and tabulated. The total beam potential is then found by superposition of that pre-
calculated data appropriately scaled. As an example, a beam bunch with total charge of totalQ =10-11 C in a 
conducting chamber was evaluated. See Fig. 2. 
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Figure 2. Beam bunch within a round conducting chamber 6 cm in diameter. The beam width is twice the height. On the 
left-hand side: horizontal (solid) and vertical (dashed) longitudinal (z) profiles are plotted, on the right-hand side: the 
widest transverse cross-section of the beam, corresponding to z=0.07 m on the left plot. 
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Figure 3. Space charge potentials u(x, y,z, p)  (left) and electric fields Ez (x, y, z, p) = −∂u / ∂z  (right) at radial 
positions r = (0, 1/3, 2/3,1) x Rcyl with r2 = x2+y2 for azimuthal positions α=0, π/4, π/2.   
 
 In Fig. 3, the space charge potentials and fields of the bunch of Fig. 2 are shown at radial positions r 
= (0, 1/3, 2/3,1) x Rcyl with r2 = x2+y2 for azimuthal positions α=0, π/4, π/2.  The longitudinal density is 
Λ(z)=λ0⋅(1−z2/zm

2).  A relatively small number of templates were required to achieve good accuracy.  E.G., a 
100 slice reconstruction of the total potential for the beam in Fig. 2 provides an error of <1.5% when 
compared to a general 3D successive over-relaxation technique whereas the number of stored tabulated 
template slices was only about 10. 
 A weak sensitivity of the potential and electric field was found when the parameter p was varied over 
values p = 0.5, 1, 3 and 6 (not shown).   Given this relative lack of sensitivity of the Ez electric fields to the 



details of charge distribution (1), it may be possible without significant error to utilize template potentials for 
only a few values of p resulting in only a moderate amount of pre-calculated data necessary in this 
computational scheme for a sub-3D PIC code [7]. 
 
3 Extension of rms envelope equations 
 rms-envelopes [5,6] are valid for beams passing through a linear focusing lattice in free space when 
the rms emittances are quasi-invariant.  If beam image forces due to conducting boundary are not negligible, 
their effect must be included.  For a beam particle with phase coordinates (x,y,px,py) through a linear focusing 
Kx,y using the equations for the second moments of the distribution function f(x, y, px,py),we have for <x2>: 
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2 and σx=<x2>1/2, for beams with ellipsoidal symmetry, averaging and 

minimization of < xFx
sc > , < yFy

sc >  by least square methods, yields the standard rms-equations [6]. 

  To include an elliptical conducting chamber, the total space charge force becomes 

Fx ,y
total = Fx , y
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image  for the beam pipe interior ( x,y ∈R) satisfying utotal

x ,y∈∂R= 0  on the boundary. 

Averaging and least squares minimization of < xFx
total > , < yFy

total >  yields the linear space charge forces for 

an elliptically symmetrical beam. If the boundary has a simple form, the template potentials and 
corresponding electric forces ˆ F x, y

total  for 2D beams having different aspect ratios may be tabulated using the 

2D version of the method from [1] with long charged cylinders used for the templates [8]. Then the extended 
version of the rms-envelope equations, having a zero potential  utotal  on the chamber are: 
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 As an example, we considered an injection line and 36 periods of the University of Maryland E-Ring 
with beam of parameters as given in [9].  Dispersion matching was neglected and a zero momentum spread 
was assumed.  Given in the upper plot of  Fig. 4, is the matched result using the standard model in free space.  
For the same lattice, the result of the extended model (4) with a conducting chamber of 30 mm x 20 mm  is 
given in the lower plot of Fig. 4 where the perturbations due to inclusion of image forces are evident.  The 
model (4) was in good agreement with the result from a general 2D PIC code as given in the bottom plot of 
Fig. 4.  For this example, the PIC simulation took ~40 min to trace 105 particles whereas the integration of 
Eqs. (4) required only fractions of a second. 
 The extended version (4) is therefore very attractive for high-current beam optimization algorithms. 
Since the model (4) is not fully self-consistent, there may be error accumulation for longer transport systems.  
Thus, the extended model would be best applied to relatively short transport systems. Further generalizations 
of this model to include general boundaries (e.g. two conducting planes, etc.) the inclusion of momentum 
dispersion and a generalization for 3D case are planned. 
 
 
 



 
 

Figure 4: Beam envelopes through the E-Ring injection for the standard (top plot) and the extended model (4) and PIC 
simulation (bottom plot). 
 
4 Conclusion 
 The template potential method has proven to be a fast and accurate computational tool for space 
charge simulation.  Applications to the slice algorithm [1-3], the sub-3D PIC code [7] and extended version 
of envelope equations demonstrate its versatility and efficiency.  
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