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METHOD TO FIND SPACE CHARGE FORCES OF HIGH-CURRENT BEAM 
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Introduction 

The three-dimensional (3D) space charge forces of a charged particle beam bunch may be found by 
analytical methods for only the simplest beam bunch configurations in the absence of conducting boundaries.  
Numerical recipes such as grid Poisson solvers are required for more general beam distributions within 
arbitrary conducting chambers.  Though these algorithms can in principle be used for any beam shape or 
conducting chamber geometry, the goal of the procedure discussed in this paper is to develop a much faster 
but nearly as accurate approach for a large class of beam distributions within relatively simple conducting 
boundaries. 

The main concept of the fast algorithm is the representation of the beam as a sequence of discrete 
charged disks or slices.  The total beam potential is then found by superposition of the individual slice 
potentials.  For the cases explored, this technique has been demonstrated to be both fast and accurate when 
compared to grid Poisson solvers.  In the present paper, we generalize the method to accommodate more 
general beam bunch configurations with different transverse aspect ratios and longitudinal charge density 
distributions. These generalizations will allow space charge effects for large classes of accelerator 
configurations to be appropriately simulated.  
 
Charge density distributions 

For two dimensional (2D) transverse charge distributions, we consider rms-matched density profiles 
based on the concept of equivalent beams (For details see the reference [1] and the bibliography therein). 
 
Consider a two-dimensional charge density distribution that depend on a parameter p:  
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where x and y are transverse coordinate variables and xm(p), ym(p)  and p are distribution variables. This 
analytic representation allows significant variance of the charge distribution.  For most cases ( 0>p ) the 

density is maximal at the beam center with the charge density going to zero near the beam edge. The simplest 
case ( 0=p ) corresponds to a constant charge density.  With 0<p ,  more exotic beam distributions such as 

a hollow-beam may also be represented. 
The corresponding distribution function ),,,,( pyxyxf ′′  also depends on the parameter p .  The 

rms beam size for arbitrary σ  as function of ),,( pyx  is obtained by integration over ),( yx ′′  with 

normalization. 
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Circular rms-matched transverse charge densities 

For the case of a round beam (with notation: 22 yxr +=  and 22
mmm yxr += ): 
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Due to the axial symmetry the same expression is valid for vertical rms-size ( >>=<< 22 yx ). Noting that 

4/)0()0( 22
mrx =〉〈 , for the case of equal transverse rms-sizes for a uniformly charged slice: 
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where )0(mσ  denotes the charge density for the uniform distribution. For increasing values of  p, the shape 

of a distribution  ),( prσ   asymptotically gives: 
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Thus, we obtain in the limit a 2D Gaussian-like charge density distribution, with standard deviation equal to 

>< 2x  (either horizontal or vertical rms-size of the round beam): 
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The charge densities ),( prσ  from this procedure are plotted in Figure 1 for p≥0 where the distributions 

have maximal values at the beam center.  For p = 0, the distribution is uniform like the KV distribution. The 
water-bag and parabolic distributions correspond to p=1 and p=2 respectively [1]. 

Plotted in Figure 2 are charge densities for p<0 where )1,( −=prσ  (not shown) represents a 

singular distribution corresponding to the ideal hollow beam. Note that all charge density distributions shown 

in these figures are rms-matched, i.e. have the same )()( 22 pypx >=<><  for any  p, whereas beam 

maximal sizes depend on  p (see equation (4)). 
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Figure 1. Charge densities ),( prσ  as function of radial coordinate r for 6  3,  , 2  1,  0.5,  0,=p , and Gaussian shape. 
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Figure 2. Charge densities ),( prσ  as function of r for 0.5.-  and  .20  ,0 −=p  

 
 
Elliptical rms-matched transverse charge densities  

For the 2D elliptical charge densities: { }1   :),( 2
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Longitudinal (z) line charge densities 

A uniform line charge density ( constz ≡)(λ ) of a bunched beam is not particularly physical having 

a singularity in the field derivative zEz ∂∂ /  at the bunch edges. To analytically describe more physical 

situations, we introduce a line density function )()( 0 zz λλ ⋅=Λ  where ��z) has a maximum value of 1 and 

is zero at the bunch ends (z = ±zm).  The parameter  0λ  must satisfy the following normalization criterion: 
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where J1 corresponds to the total charge with the z dependence from ),,,( pzyxσσ =  via ),( pzrr mm = .  

Note that )(zΛ  may be  any  function. In practice, we limit ourselves to a family of functions that 

have a  maximum value within the bunch and ramp to zero at the end of the bunch (z=±zm). We do not 
impose other limitations on the behavior of the longitudinal (z) density. 
 
Space charge potentials of 3D bunched beams 
 
Ellipsoid beam bunch with arbitrary transverse and constant line (z) charge density  

Let us now consider a charged 3D ellipsoid: { } 1   :),,( 2

2

2

2

2

2

≤++
zyx a

z

a

y

a

x
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== yx aa 0.01 m and =za 0.1 m, propagating along a conducting round pipe with radius of =cylR 0.02 m 

and carrying a total charge of totalQ =10-11 C  as shown in Figure 3.  The space charge potential ),,( zyxu  

within pipe is found from the Poisson equation: 
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The method to find ),,( zyxu  is based on the slice algorithm formalism. The transverse density of all slices 

have transverse charge density profiles as those in Figure 1. So far we assume that the longitudinal (z) 
density is constant. In Figure 4 the off-axis potentials as functions of (z) at several radial positions (r) and 
different parameter (p) are given. 
 

 
 
Figure 3.  Ellipsoidal beam bunch within a round conducting chamber 4 cm in diameter.  The beam in the transverse 
dimension is round. 
 

At a given radial position, the potentials are similar for 65.0 ≤≤ p . However, significant variance 

is seen for the Gaussian distribution as shown on the right hand side of Figure 4.  The electric fields 
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zuEz ∂−∂= /  from the potentials of Figure 4 are given in Figure 5.  As anticipated given the similar 

potential shapes, the electric field dependence on  p  is relatively weak.  
It is important to note that, though the transverse charge distributions vary significantly as shown in 

Figure 1, there is only relatively modest variance of the potentials given in Figure 4  and even less variation 
in ),,( pzrEz  as seen in Figure 5.  As a consequence, for beams with constant longitudinal (z) charge 

density, the electric field value is relatively insensitive to the radial charge distribution for the parameter  p  
values  0> . However for  0≤p   the electric field values are significantly more sensitive to the choice of 

the radial charge distribution as shown  in Figure 6.  
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Figure 4.  Off-axis potentials ),,( pzru for different radii  r=(0, 0.2, 0.4, 0.6, 0.8, 1) cylR×  for the beam bunch of 
Figure 3 for transverse charge densities ),( prσ  with 6  and  3  1,  0.5,=p  on the left side. On the right hand side the 
potentials for Gaussian ( ∞=p ) transverse distribution is plotted (dashed lines). 
 

-0.2 -0.1 0.0 0.1 0.2

-30

-20

-10

0

10

20

30

Longitudinal Dimension Z [m]

O
ff

-a
xi

s 
 E

z(
r,

z,
p)

  [
V

/m
]

-0.2 -0.1 0.0 0.1 0.2

-30

-20

-10

0

10

20

30

Longitudinal Dimension Z [m]

O
ff

-a
xi

s 
 E

z(
r,

z,
p)

  [
V

/m
]

 

Figure 5. Space charge electrical fields 
z

pzru
pzrEz ∂

∂−= ),,(
),,(  for different radii r=(0, 0.2, 0.4, 0.6, 0.8, 1) cylR×  

for the beam bunch of  Figure 3 for transverse charge densities ),( prσ  with 6  and  3  1,  0.5,=p  on the left side. On 

the right hand side plotted with dashed lines, the field for the Gaussian distribution is added. 
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Figure 6. Space charge electrical fields ),,( pzrEz  of the beam bunch of Figure 3 as a function of  (z) for different 

radii  r=(0, 0.2, 0.4, 0.6, 0.8, 1) cylR×  for ),( prσ  with  p = -0.2 (solid) and 0 (dashed).  

 
Ellipsoid beam bunch with arbitrary transverse and variable line (z) charge density 

To evaluate the same charged ellipsoid as in Figure 3 but with varying longitudinal densities, we 

consider the longitudinal density given by )/1()( 22
0 mzzz −⋅=Λ λ .  The electric fields are given in Figure 7 

for transverse charge distributions with  p  values 0> .   The variation is similar to that for constant line (z) 
charge density.  Note that the behavior of  ),,( pzrEz   at the bunch edges becomes smooth, due to more 

physical model of  )(zΛ , that also results in no singularity in zEz ∂∂ / . 
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Figure 7.  Space charge electrical field ),,( pzrEz  of the beam bunch of  Figure 3 with variable longitudinal (z) 

charge density  and transverse charge distributions with  p  values 0>  are at different transverse radii  r=(0, 0.2, 0.4, 

0.6, 0.8, 1) cylR× . 

 
The electric fields for transverse charge distributions with  p  values 0<  are given in Figure 8. 

Again, the behavior of the fields is more sensitive to the parameter p for transverse charge distributions with  
p  values 0< . 
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Figure 8.  Space charge electrical field ),,( pzrEz  of beam bunch of  Figure 3 with variable longitudinal (z) charge 
density  and transverse charge distributions with  p  values 0<  at different transverse radii  r=(0, 0.2, 0.4, 0.6, 0.8, 
1) cylR× . 
 
Longitudinally asymmetrical beam bunch with arbitrary density distributions 

Beam transported through, for example, a quadrupole focusing channel will have different widths in 
the horizontal (x) and vertical (y) planes as shown in Figure 9.  To properly accommodate this beam 
condition with the slice algorithm, we generalize round beam formalism. 

The general expression for the single slice potential with no axial symmetry is given by general 
expression: 
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To find image density and image potential on the conducting boundary, we employ the charge 

density method. However, because of the absence of axial symmetry the dimension of the set of equations in 
the charge density method becomes proportional to ϕN   with typical 100≅ϕN . 

To minimize memory requirements and to increase the speed of calculation, we assume an elliptical 
shape transversely. Hence, a computational economy may be achieved by performing calculations over only 
one quadrant, as shown in Figure 9 for azimuthal angles ]2/,0[ πα ∈ . In the absence of a transverse 

elliptical symmetry, the slice algorithm is inappropriate. 
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Figure 9. Longitudinally asymmetrical beam bunches within a round conducting chamber 6 cm in diameter (left and 
central plots). On the right hand side a transversal profile is shown (solid line), the round and prolate beam profiles are 
plotted as dashed and dotted lines. Due to symmetry, only first quadrant ( ]2/,0[ πα ∈ ) analysis is required to find 
potential. 
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In Figure 10 the space charge potentials and electric fields are shown at azimuthal angles 
2/,4/ ,0 ππα =  for the beam bunch of Figure 9 (central plot). For transverse charge density distribution 

with  p = 0.5, 1, 3, 6  and the longitudinal density has the form )/1()( 22
0 mzzz −⋅=Λ λ . The aspect ratio of 

the transversal cross-section is such ( 2=χ ) that the beam width is twice the height. The p dependence is 

minor and both potential and fields: ),,,(  and  ),,,( pzyxEpzyxu z  are similar to those of a round beam as 

well as of the both beams with oblate and prolate transversal shapes. 
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Figure 10. Space charge potentials ),,,( pzyxu  and electric fields ),,,( pzyxEz  of the asymmetrical beam bunch 
from Figure 9 (middle plot) shown along radii =r (0, 1/3, 2/3,1) cylR×  with 2/ and  4/  ,0 ππα = . For each plot 
the transverse charge density was varied with the parameter 6  and  3  1,  0.5,=p  showing a weak sensitivity for both 
the potential and field behavior. The potential and field of a longitudinally asymmetric beam having axial symmetry 
(not shown) have very similar behavior. 
 

All numerical results, obtained by the slice algorithm in this section were checked by a general 
successive over-relaxation three-dimensional (SOR-3D) method. The coincidence between two approaches, 
for all considered cases, was within a few percents [2]. 
 
Discussion and conclusion 

Improvements to the slice algorithm provide fast and accurate computation of the space charge 
potentials for a large class of bunched beams. The inclusion of image forces due to conducting boundary is 
the intrinsic feature of the method. The influence of the transverse charge distribution on the longitudinal 
field was explored. It was found that: 

• the values of ),,,( pzyxEz  are relatively insensitive to the value of transverse charge 

distribution described by the function ),,,( pzyxσ  for values of 0>p . 

• for values of 0≤p  the sensitivity is greater and care should be taken to avoid errors. 

As a beam is propagated through a system the transverse charge density distribution will evolve.  
Given the relative lack of sensitivity of the zE  electric fields to the details of the transverse charge 
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distribution (p>0), it may be possible to only utilize template potentials for only one value of  p.  Though this 
assumption will require verification, if valid, would result in only a moderate amount of pre-calculated data 
given the computational scheme for sub-3D PIC code described in reference 2. 
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