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I. Introduction
Recently, isotope yields from the central collisions of112Sn +112 Sn, 112Sn +124 Sn, 124Sn +112 Sn and
124Sn +124 Sn collisions have been measured [1]. The ratio of isotope yields from two different reactions, 1
and 2,R21(N,Z) = Y2(N,Z)/Y1(N,Z), is found to exhibit an exponential relationship as a function of the
isotope neutron number N, and proton number, Z [1, 2].

R21(N,Z) = Y2(N,Z)/Y1(N,Z) = C·exp(α·N + β·Z) (1)

whereC is an overall normalization factor,α andβ are empirical parameters.
Equation (1) can be derived from the primary isotope yields assuming that at breakup the system may

be approximated by an infinite equilibrated system and employing the Grand Canonical Ensemble. In this case,
predictions for the observed isotopic yield from reactioni are governed by both the neutron and proton chemical
potentials,µin andµip and the temperatureT , plus the individual binding energies,B(N,Z), of the various
isotopes [3, 4]

Yi(N,Z) = Fi(N,Z)exp(B(N,Z)/T )exp(Nµin/T + Zµip/T ) (2)

The factorFi(N,Z) includes information about the secondary decay from both particle stable and
particle unstable states to the final ground state yields. If the main difference between system 1 and 2 is the
isospin [1, 3, 4], then the binding energy terms in Eq. (2) cancel out in the ratio ofY2(N,Z)/Y1(N,Z). If
one further assumes that the influence of secondary decay on the yield of a specific isotope is similar for the
two reactions, i.e.F1(N,Z)≈F2(N,Z), then Equation (1) is obtained,̂ρn = exp(∆µn/T ) = exp(α) and
ρ̂p = exp(∆µp/T ) = exp(β) are the relative ratios of the free neutron and free proton densities in the two
systems, where∆µn and∆µp are the differences in the neutron and proton chemical potentials. The empirical
observation that this fugacity dependence is respected suggests that the effect of sequential decays onR21(N,Z)
is small and thatR21(N,Z) reflects the properties of the primary source [1]. If true,R21(N,Z) may be an im-
portant and robust observable. Furthermore, Eq. (1) allows one to extrapolate isotope yields over a wide range
of the reacting systems from the measurements of a few selected isotopes [2].

Since the Grand Canonical limit is strictly valid only for statistical fragment production in an infinite
dilute equilibrated system, it is important to study the validity of the scaling behavior of Eq. (1) with realistic
models. In this paper, we demonstrate that the isoscaling property of Eq. (1) is also predicted by three additional
statistical models, the microcanonical and canonical Statistical Multifragmentation Models as well as the Ex-
panding Emission Source (EES) model. In all three models, isoscaling is affected only slightly by sequential
decays, andα andβ are mainly sensitive to the proton to neutron composition of the emitting source. In a future
paper, we will discuss predictions of non-equilibrium transport models such as the Boltzmann-Nordheim-Vlasov
[5] and Antisymmetrized Molecular Dynamics models [6].

II. Microcanonical Statistical Multifragmentation model
To explore the effect of secondary decays onR21(N,Z), we first employ a detailed sequential decay simu-
lation to de-excite primary fragments created in the microcanonical statistical multifragmentation model [7].
Such models have been used successfully to describe fragment multiplicity distributions, charge distributions,
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mean kinetic energies, and mean transverse energies of the emitted particles from multifragmentation processes
[8, 9]. However, the most commonly used Statistical Multifragmentation Model (SMM) [10, 11] contains only
a schematic treatment of the sequential decays of excited fragments and does not include much of the nuclear
structure information needed to describe the secondary decay of hot primary fragments. A new improved se-
quential decay algorithm [7] has been developed to address the secondary decay problem. Each decay from
the initial excited fragment is calculated using tabulated branching ratios when available [12], or by using the
Hauser-Feshbach formalism [13], when such information is unavailable. Aside from incorporating empirical
information on the binding energies of the nuclei, the new algorithm includes accurate structural information
such as the discrete bound states and resonant states for nuclei up to Z=15 [7, 14]. This new sequential decay
algorithm is coupled to the SMM code of ref. [15], which was chosen mainly for the ease of incorporating the
sequential decays of the primary fragments. This newly modified SMM code is referred as SMM-MSU in this
article. The physics results should be similar if other SMM codes are used. However, it is worthwhile to note
that this SMM code samples the multifragment phase space according to the procedure of Ref. [15] and not
according to the Monte Carlo event generation procedure of Refs. [10, 11]. This allows the calculation of low
fragment yields of the neutron or proton rich isotopes more precisely.

To examine the effects of secondary decay, the predicted carbon isotope distributions from SMM-MSU
are shown in Fig. 1. The primary distributions from a source of A=186, N/Z=1.48 are shown as open points
joined by a dashed line while the final distributions after secondary decay are shown as closed circles joined by
a solid line in the top panel. Typically, the error bars are smaller than the size of the symbols for most isotopes
except the very neutron or proton rich ones. The primary distributions are wide and spread over a large range
of neutron-rich nuclei and peak around14C. After sequential decays, the distributions are much narrower and
peaked near12C, more in agreement with experimental observation. Such narrowing of isotope distributions due
to sequential decays has been well established [7, 16, 17, 18].

Figure 1: Differential multiplicities atθCM = 90o for carbon isotopes as a function of the mass number of the isotope. Top
panel: primary yields are denoted by open points connected by the dashed lines while the solid points joined by solid lines
denote the yield after sequential decays (see text for details). Bottom panel: Final Carbon isotope yields for two systems
with different isospin asymmetries, closed circles forδ=0.194, N/Z=1.48 and open squares forδ=0.107,N/Z=1.24. The
source size is kept constant atA=N + Z=186.

It has been suggested in Ref. [19] that the isotope distributions are sensitive to the proton and neutron
composition of the sources from which the fragments are emitted. To explore this issue, we eliminate the size
effect by changing the charge of the emitting source but keeping the size constant, i.e. A=186. The carbon
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isotope distributions after secondary decay with N/Z=1.48 (closed circles) and N/Z=1.24 (open squares) are
compared in the bottom panel of Fig. 1. As expected, more neutron rich isotopes (A>12) are produced from
the neutron richer system, while the opposite is true for the proton-rich isotope yields. This trend is consistent
with experimental observation [1]. It suggests that isotope yield distributions can be used to study properties that
reflect the isospin asymmetry of the emitting sources.

Fig. 1 illustrates an important point that the isospin effects on isotope yields are much reduced by
sequential decays. The differences between the final isotope yields from two systems with different isospin
asymmetry are much less than those between primary isotope distributions. It is thus important to search for
observables such as relative isotope ratios, which cancel out some of the effects of sequential decays, binding
energy etc. on isotope productions.

Figure 2: Predicted (symbols) relative isotope ratios,R21(N, Z), of Eq. (1) for the two systems,A1=168,Z1=75 and
A2=186,Z2=75 using the SMM-MSU code [13,20] as a function of N obtained from the primary isotope yields (upper
panel) and the final yields after sequential decays (lower panel). Solid and dashed lines are best fits to Equation (1) using
the predicted ratios.

In Fig. 2, the relative isotope ratiosR21(N,Z) are plotted, as a function of N for the primary (top
panel) and secondary isotope (bottom panel) yields predicted by the SMM-MSU model. We chooseA1=168 and
Z1=75 (N1/Z1=1.24,δ1 =0.107) andA2=186,Z2=75 (N2/Z2=1.48,δ2=0.194) for sources 1 and 2 whereAi

andZi are the mass and charge number of source i. The open symbols representR21(N,Z) of odd-Z elements
while the closed symbols are predicted ratios for the even-Z elements. The ratios of both primary and secondary
fragments closely follow the trend described by Eq. (1); isotopes of the same Z, plotted with the same symbol,
lie along lines with similar slope in the semi-log plots. For comparison, the solid and dashed lines correspond to
the calculations using the best-fit values ofα, β andC of Eq. (1) to the predicted ratios. Since more neutron-rich
isotopes are produced from the neutron-rich system, the slopes of these lines are positive. More importantly, the
slopes are similar for all elements before and after sequential decay.

For oxygen isotopes, the agreement between predicted ratios after sequential decays and the best fit
lines is not very good. This discrepancy may be an artifact from the sequential decay algorithm used. The cur-
rent secondary decay code which has structural information for nuclei up toZ = 15 may not be reliable for
secondary yields with largeZ. The effect of incomplete structural information on sequential decays is illustrated
in Fig. 3. The histograms represent calculations for the carbon (upper panel) and oxygen (lower panel) isotope
distributions which use the Hauser Feshbach decay formalism [13] and take into account all the experimental
structural information up toZ = 15. Closed points joined by dashed lines are the isotope distributions when
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the Hauser Feshbach formalism is used with the experimental structural information up toZ = 10 only [7]. In
both cases, decays of heavier fragments not calculated via the Hauser Feshbach approach are calculated with
the Weisskopf formalism and liquid-drop binding energies [20, 21]. While the yields for the carbon isotopes are
similar with both decay tables, the yields for the neutron rich oxygen isotopes are quite different. Sequential de-
cay calculations with more complete structure information predict more yields for neutron-rich oxygen isotopes.
This indicates that sequential charged particle decay plays an important role in producing neutron-rich isotopes
and that structure information is relevant to such calculations.

Figure 3: Differential multiplicities atθCM = 90o for carbon (top panel) and oxygen (bottom panel) isotopes as a function
of the mass number. Closed points are predictions if the sequential decay information from Ref. [13] where the sequential
decay table truncates at Z=13, is used. Histograms are predictions when the structure information in Ref [13] is extended
to Z=15 [20].

III. Expanding Emitting Source model
The Expanding Evaporating Source (EES) model [22] provides an alternative description of multifragmentation.
The EES model utilizes a rate equation formula similar to the evaporation formalism. The emission rate of
fragments with 3≤ Z ≤20 is enhanced when the residue expands to sub-saturation density. Within the context
of this model, the neutron scaling parameter,α can be described analytically and provide some physics insight
regarding the symmetry energy [2].

To understand the origin of isoscaling in the EES approach, we must examine the EES fragment emission
rate. Similar to the formalism of Friedman and Lynch [23], statistical decay rates in the EES model are derived
from detailed balance following the Weisskopf model [20]. When the relative rates are dominated by emission
within a particular window of source-mass or source-temperature, the relative yields are directly related to the
instantaneous rates

dn(N,Z)/dt ∝ T 2·exp(−Vc/T + N ·f∗
n/T + Z·f∗

p /T − B/T ) (3)

whereVc gives the Coulomb barrier, and the termsf∗
n andf∗

p represent the excitation contributions to the free
energy per neutron and proton, respectively. The factorB = BE(Ni, Zi)−BE(Ni −N,Zi −Z)−BE(N,Z)
reflects the separation energy associated with the removal of the isotope (N,Z) from the parent nucleus, here
denoted by the subscript ”i”.

When constructingR21(N,Z), some terms, such as the binding energy of the emitted isotope, BE(N,Z),
cancel out in the ratio, simplifying the analysis of the dependence ofR21(N,Z) on N andZ. To use what
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remains of theN andZ dependence of the separation energy termB, we expand the differences in the binding
energies of the residues with neutron numberNi − N and proton numberZi − Z in a Taylor series as follows:

BE(N2 − N,Z2 − Z) − BE(N1 − N,Z1 − Z)≈a·N + b·Z + c·N2 + d·Z2 + e·N ·Z (4)

Wherea, b, c, d ande are coefficients of the Taylor series. Empirically, the coefficients,c, d, ande of
the higher terms inN2, Z2 andN ·Z are surprisingly small. One can approximate the binding energy difference
with the two leading order terms that depend on the difference in the proton and neutron separation energies
between the two systems, 1 and 2 i.e.a = −∆sp, b = −∆sn. Assuming for simplicity that the residues for
systems 1 and 2 have the same charge,R21(N,Z) can be written as follows:

R21(N,Z) ∝ exp[(−∆sn + ∆f∗
n)·N + (−∆sp + ∆f∗

p + e∆Φ(Zi − Z))·Z/T ] (5)

whereΦ(Z) is the difference between electrostatic potential at the surface of residue 1 and residue 2.
∆f∗ is the differences in free energy for the two systems. Aside from the second order term from the electrostatic
potential, which is small for the decay of large nuclei, all terms in the exponent of Eq. 5 are proportional to
eitherN or Z, resembling Eq. (1). The corresponding scaling parametersα andβ are functions of the separation
energies, the Coulomb potential and small contributions from the free excitation energies.

In general, the contribution from free energy is found to be much smaller than the contribution from the
separation energy. This is particularly true for systems of comparable mass and energy but differentN/Z ratio.
Moreover, the volume, surface, and Coulomb contributions to the separation energy largely cancel if the masses
of the parent nuclei are similar, leaving the difference in symmetry energies alone as the dominant contribution
to ∆sn. The symmetry energy takes the form:

Esym = Csym(N − Z)2/A = Csym(A − 2Z)2/A (6)

The change in neutron separation energy between the two systems can be approximately obtained by
taking the derivatives in Eq. (6) with respect toN

α = −∆sn/T ≈ 4Csym[(Z1/A1)2 − (Z2/A2)2]/T (7)

In terms of the isospin asymmetry parameter,δi = Ni−Zi
Ai

,

α = 2·Csym·∆δ
(
1 − δ̄

)
(8)

where∆δ = δ2 − δ1, andδ̄ = δ1+δ2
2 . Eq. (8) shows howα depends on the asymmetriesδi of the two systems.

This dependence leads to a non-linear dependence onN2 andZ2 and a linear relationship between(Z2/A2)2 and
α for a fixed system 1. In the EES model, the symmetry energy term,Csym, which takes the liquid drop value
of 23.4 MeV [21], must be extrapolated to sub-saturation density as the system expands, i.e.,Csym is density
dependent. Measurements ofR21(N,Z) may thus probe the density dependence of the symmetry energy as
discussed in Ref. [2, 14].
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IV. Canonical Model
To explore the relationship between the neutron and proton composition of the source(Z2/A2) andα in the
statistical fragmentation models, we must perform calculations with different sources.

For these studies we use the statistical multifragmentation model (SMM-McGill) [19] that adopts recur-
sive techniques to shorten the time needed for a canonical calculation. We have compared the predictions of this
canonical approach to the microcanical model of ref. [7]; the two approaches provide similar predictions for the
observables presented below. There are also similarities between these two approaches and the predictions of
the Grand Canonical ensemble [18, 24].

We kept our reference system (reaction 1) fixed atA1=168,Z1=75 and performed calculations on sys-
tems with different(N2/Z2) values. The results are shown in Fig. 3. Four groups of calculations are performed
by either keeping source size constant atA2=186 (solid circles), orA2=124 (open circles) or by keeping the
charge of the source constant atZ2=75 (closed squares) orZ2=50 (open squares). All four systems with differ-
ent source sizes lie along one curve. Thus, the slope parametersα and therefore the isotope distributions are not
sensitive to the system sizes and charges. They are mainly dependent on the isospin composition,(N2/Z2) or
equivalently on the isospin asymmetryδ2 = (N2/Z2 −1)/(N2/Z2 +1), of system two. The experimental linear
relationship between̂ρn and(N2/Z2) is observed approximately for(N2/Z2) >1.2. For(N2/Z2) < 1.2, there
is a concave curvature in̂ρn which is especially noticeable at smallN2/Z2. Instead of a linear relationship, the
points in Fig. 4 are better described by the solid curve of the form,

Figure 4: The relative free n-density,ρ̂n = exp(α), is plotted as a function of theN2/Z2 ratio of the source. A linear
relationship is observed over the range ofN2/Z2=1.24 and 1.48, similar to the experimental results. However, over a wider
range, the dependence ofρ̂n onN2/Z2 is not linear and the trend is well described by Eq. (9). See text for details.

α = 14.86[0.1993 − (1 + N2/Z2)−2] = 14.86[0.1993 − (Z2/A2)2] (9)

Comparing this formula to Eq. (7), we see that relationship betweenα and (Z2/A2)2 predicted by
the EES model, is evident in the SMM calculations. IfT is taken to be 5 MeV, Eqs. 7 and 9, give a value of
Csym=18.6 MeV as compared to the liquid drop model value,Csym =23.4 MeV [21]. Such dependence probably
signals the importance of the symmetry energy as the dominant contribution toα in the SMM model. Indeed, if
the asymmetry terms to the binding energies of the nuclei are turned off in the SMM and EES calculations, the
isoscaling behavior observed in Fig. 2 disappears.
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