STRUCTURE OF ¹⁰Li AND ⁹He

L. Chen^{*a*}, M. Chartier^{*a*}, ^{*b*}, J. R. Beene^{*b*}, B. Blank^{*a*}, ^{*c*}, B. A. Brown^{*a*}, A. Galonsky^{*a*}, N. Gan^{*b*}, K. Govaert^{*a*}, P. G. Hansen^{*a*}, J. Kruse^{*a*}, V. Maddalena^{*a*}, M. Thoennessen^{*a*}, and R. L. Varner^{*a*}.

Fast beams of exotic nuclei produced in direct reactions were used to study nuclei beyond the drip line, where in particular the structure of unbound N = 7 isotopes was explored. In ¹⁰Li the observation of an *s*-wave ground state was confirmed. The ground state of ⁹He was measured for the first time and it has also *s*-wave character.

1 INTRODUCTION

The availability of fast radioactive beams has opened up the possibility for detailed studies of nuclei along and even beyond the drip lines. Although the proton drip line can be reached for many cases with stable beams and fusion evaporation reactions, most recently the study of the most exotic nuclei, for example ¹⁰⁰Sn and ⁴⁸Ni was achieved with fragmentation of fast beams [1, 2]. Neutron-rich nuclei cannot be formed with fusion reactions and again the exploration of very neutron-rich nuclei relied predominantly on fast fragmentation reactions. The shell inversion of the *s*- and *p*-shell, first observed in ¹¹Be [3], is not a single occurrence but persists also in the lighter N = 7 nuclei ¹⁰Li and ⁹He. These nuclei are particle unbound and it is a special challenge to study their structure.

2 THE UNBOUND NUCLEUS ¹⁰Li

The determination of the ground state of ¹⁰Li has been controversial for quite some time [4]. Several different experiments attempted to observe the predicted *s*-wave ground state which would confirm the level inversion as a general feature of light N = 7 isotopes. A recent experiment studied projectile breakup reactions of the radioactive isotopes ^{10,11,12}Be [5] and observed final-state interactions of the residue-neutron pair.

Figure 1 (a) shows the relative velocity spectra for the ${}^{9}Li+n$ system for the three different projectiles 10,11,12 Be. The most striking qualitative result is the almost total absence of ${}^{9}Li+n$ events from 10 Be, which cannot give rise to ${}^{9}Li+n$ in a pure projectile fragmentation process. This proved that the technique, designed to observe projectile fragmentation, discriminates effectively against reaction products, including neutrons, originating in the target. The difference between the 11 Be and the 12 Be spectra also shows the influence of the initial state; the more bound *s* state in 12 Be leading to a broader distribution. The observation of a single peak around zero relative velocity is due to final state interaction and indicates a low-lying unbound state. Figure 1(b) shows the 10 Li data from the 11 Be reaction together with a potential model fit. The extracted scattering length is numerically very large, more negative than -20 fm corresponding to an excitation energy of less than 50 keV for the virtual state. The fact that it is observed in the reaction from 11 Be with an *s*-wave ground state, confirms the previous observations that 10 Li has an *s*-wave ground state.

This result was also confirmed in a different measurement of the one proton knockout reaction of ¹¹Be, where the Li isotopes were detected in coincidence with γ -rays [6]. The central peak in the relative velocity spectra could in principle be due to a decay from an excited state in ¹⁰Li to the first (and only) bound excited state at 2.7 MeV in ⁹Li [7]. This state would then decay by γ -ray emission which should be observed in coincidence with the ⁹Li fragment.

Figure 2 shows the γ -ray spectra in coincidence with ⁹Li following the one proton knockout reaction from ¹¹Be. The figure also shows γ -rays in coincidence with ⁸Li which serves as a check of the background. A peak at 2.7 MeV is clearly visible in the γ -ray spectrum in coincidence with the ⁹Li fragments. However, it accounts for only 7±3 % of the total population of ⁹Li. The weak branch to the excited state proves that the lowenergy neutrons are emitted in a transition from the lowest state of ¹⁰Li to the ground state of ⁹Li and confirms the l = 0 assignment.

Figure 1: (a): Measured neutron-fragment velocity-difference spectra for ¹⁰Li produced with three different projectiles, ^{10,11,12}Be. (b): Velocity difference spectra for the reaction of ¹¹Be leading to ¹⁰Li together with a potential model fit. The fit assumed an *s*-wave component with a scattering length $a_s = -25$, a background from event mixing, and a *p*-wave resonance at 0.50 MeV (adapted from Ref. 5).

3 THE UNBOUND NUCLEUS ⁹He

The experiment measuring the relative velocity of a fragment and a neutron from ¹¹Be has also been used to measure ⁹He. This must also represent a direct reaction since excited states in ¹⁰Li will emit neutrons rather than protons, which are bound by 15 MeV. The spectrum for ⁸He + n is shown in Figure 3. Again, a central peak is observed which indicates the presence of a low-energy transition. A final-state interaction characterized by a scattering length of the order of -10 fm (or more negative) was necessary in order to fit the data [5]. This corresponds to an energy of the virtual state of < 200 keV MeV. The initial state was an *s* state (¹¹Be) which fixes the angular momentum of the observed state to zero. Thus the level inversion of N = 7 isotopes continues to exist in the lightest nucleus of this isotone chain.

4 CONCLUSIONS

Projectile breakup reactions of exotic beams at high energies in coincidence with neutrons and/or γ -rays are powerful tools to study the structure of very neutron rich nuclei along and even beyond the drip line. All light N = 7 isotone were shown to exhibit a level inversion of the s- and p-states. These states are particle unbound in ¹⁰Li and ⁹He. The s-states were expressed as scattering lengths of the final state interaction with upper limits of $a_s \leq -20$ fm and $a_s \leq -10$ fm for ¹⁰Li and ⁹He, respectively. In addition, it was shown that in ¹⁰Li the observed transition was really a ground state to ground state transition and not a transition between two excited states.

Figure 2: ⁹Li- γ coincidence spectrum (black line) showing an excess of γ -rays at 2.7 MeV. The smooth background is determined from ⁸Li- γ coincidences (shaded area). The two spectra are normalized to the same number of incident particles (adapted from Ref. 6).

Figure 3: Velocity difference spectra for the knockout reaction from ¹¹Be leading to ⁹He. The potential model fit assumes an *s*-wave component characterized by a scattering length of $a_s = -20$ fm, a background from event mixing, and a *d*-wave resonance at 2.1 MeV (adapted from Ref. 5).

With new more intensive exotic beam facilities coming online in the future these structure studies can be extended to heavier systems [8].

- a: NSCL, Michigan State University, East Lansing, MI 48824, USA
- *b*: ORNL, Oak Ridge, TN 37831-6368, USA
- c: CEN de Bordeaux-Gradignan, 33175 Gradignan Cedex, France

References

- 1. K. Sümmerer et al., Nucl. Phys. A616, 341c (1997).
- 2. B. Blank et al., Phys. Rev. Lett. 84, 1116, (2000).
- 3. I. Talmi and I. Unna, Phys. Rev. Lett. 4, 469 (1960).
- 4. M. Thoennessen et al., Phys. Rev. C59, 111 (1999), and references therein.
- 5. L. Chen et al., Phys. Lett. B 505, 21 (2001).
- 6. M. Chartier et al., Phys. Lett. B 510, 24 (2001).
- 7. R. A. Kryger et al., Phys. Rev. C37 R2439, (1993).
- 8. Scientific Opportunities with Fast Fragmentation Beams from the Rare Isotope Acceleartor, NSCL Report, Michigan State University (2000).