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The availability of high intensity radioactive beams facilitates the exploration of the isospin degree
of freedom in nuclear reactions. The isotopic degree of freedom is especially important for understanding the
behavior of the charge symmetry term of the nuclear equation-of-state [1, 2, 3], for obtaining information about
charge equilibration[4, 5, 6], and for providing stringent tests for reaction models. Understanding the connection
between the entrance channel isospin and the isotopic distribution of reaction products is also important for
optimizing production of rare isotopes far from stability. Large solid angle measurements of isotopic yields that
can provide insight into such issues are rare. Nonetheless, recent measurements have revealed systematic isospin
dependencies [7] that now appear to be manifested in a variety of nuclear reactions over a wide range of incident
energies.

To illustrate how such isotopic yields may be systematized, we examine the dependence of the isotopic
yields within the grand-canonical ensemble. While this approach is not strictly valid for finite nuclear systems,
it offers the advantage of transparent analytical formulae. In this approach the isotopic yields are governed by
both the neutron and proton chemical potentials,µn andµp and the temperatureT , plus the individual binding
energies, B(N,Z), of the various isotopes [8, 9]:

Y (N,Z) = F (N,Z, T ) · exp(B(N,Z)/T ) · exp(N µn/T + Z µp/T ) (1)

The factorF (N,Z, T ) includes spin degeneracies and information about the secondary decay from
both particle stable and particle unstable states to the final ground state yields. A precise global description of
experimental isotope distributions is difficult due, in part, to the complexity of describing the excitation and
decay reaction products from states far above the energy threshold for particle emission [10, 11, 12]. Similarly,
the accurate prediction ofF (N,Z, T ) is difficult due to a lack of comprehensive energy, spin and branching
ratio information about many relevant levels that contribute to these decays [10, 11, 12]. It has been shown that
some of these difficulties can be minimized by assuming that the influence of secondary decay on the yield of
a specific isotope is similar for two different systems labeled 1 and 2 that have same temperature but different
isospins, i.e.F1(N,Z, T ) ≈ F2(N,Z, T ) [7]. In this case, the relative isotope yield ratio,R21(N,Z), depends
on only three parameters [7]:

R21(N,Z) = Y2(N,Z)/Y1(N,Z) = C · exp(N · α + Z · β) (2)

whereα = ∆µn/T andβ = ∆µp/T reflect the differences between the neutron and proton chemical potentials
for the two reactions andC is an overall normalization constant. The parametersα, β andC are obtained by
fitting R21. To simplify the expressions used throughout this article, we define differences between the observ-
ables for the two systems as∆X = X2 − X1, e.g.∆µp = µp,2 − µp,1. We have also chosen the system in the
numerator to be more neutron-rich than the one in the denominator, i.e.N2/Z2 > N1/Z1. This definition differs
from that of Ref. [13, 14, 15] where the inverse ratios,R12(N,Z) have been used.

The accuracy of this representation can be very compactly displayed by constructing a scaled isotopic
ratio, S(β) = R21 · exp(−β Z) as a function of N. Where this parameterization is accurate and the best fit
value of β is chosen, values forS(β) of all elements lie along a straight line on a semi-log plot. We refer
to this trend asisotopic scaling. The data points plotted next to the label ”multifragmentation” in Figure 1
denote values forS(β) extracted from ratios of isotopically resolved differential multiplicities extracted from
multifragmentation events in central124Sn +124 Sn and112Sn +112 Sn collisions [7]. The scaled isotope ratios
for fragments with3 ≤ Z ≤ 8 lying along a single line, is consistent with Eq. 2 and the well known success of

1



equilibrium parameterizations for multifragmentation [16]. More surprisingly, the isotopic scaling is observed
for other reactions shown in Figure 1: strongly damped binary collisions (16O induced reactions on two targets
232Th and197Au) [17] and evaporative compound nuclear decay (4He+116Sn and4He+124Sn collisions)[14],
for which Grand-Canonical Ensemble approaches would appear to have little relevance. Why isotopic scaling is
also observed in these cases is examined below.

An examination of strongly damped collisions reveals that isotopic scaling is reasonably well respected
at low incident energies (E/A < 10MeV ) and at relatively backward angles i.e. when equilibrium is established
between the orbiting projectile and target. In such cases, the isotopic yields follow the ”Qgg-systematics”[17, 18],
in which the primary isotope yield of the projectile-like fragment depends primarily on theQ-value of the mass
transfer and can be approximated by

Y (N,Z) ∝ exp((MP + MT − M ′
P − M ′

T )/T ) (3)

whereMP andMT are the initial projectile and target masses, andM ′
P andM ′

T are the final masses of the
projectile- and target-like fragment. Here,T has a natural interpretation as the temperature, but is not always
assumed to be so. Using this expression, charge and mass conservation, and expressing explicitly only the terms
that depend onN andZ, one can writeR21as

R21(N,Z) ∝ exp[(BE(N2 − N,Z2 − Z) − BE(N1 − N,Z1 − Z))/T ], (4)

whereZi andNi are the total proton and neutron number of reactioni. BE is the binding energy of a nucleus.
Expanding the binding energies in Taylor series, one obtains an expression of the form

BE(N2 − N,Z2 − Z) − BE(N1 − N,Z1 − Z) ≈ −∆sp · Z − ∆sn · N + c · Z2 + d · N2 + e · ZN, (5)

where∆sp and∆sn are the differences of the neutron and proton separation energies for the two compound
systems. Evaluating Eq. 5 within the context of a liquid drop expansion, one finds that the second order terms
are of order (1/A), where A the mass number, relative to the first order terms. The leading order term in equation
4 becomes

R21 ∝ exp[(−∆sn · N − ∆sp · Z)/T ]. (6)

Comparison of Eqs. 2 and 6 reveals that the difference in the average separation energies plays a corresponding
role to the difference in chemical potentials in the grand canonical expression, an intriguing result when one
considers thatµ ≈ −s in the low temperature limit[12]. From Eq. 5, one expects that Eq. 6 will become less
accurate and eventually break down leading to a failure in isotopic scaling when the range of fragment masses
considered becomes large. More detailed examination suggests that one may also expect the breakdown of this
scaling trend for target and projectile far from the valley of stability.

Next we consider the yields from higher energy reactions involving the formation of a composite system
and the subsequent decay via evaporation of different isotopes. The scaling behavior for fragments detected at
backward laboratory angles (θ = 160o) in 4He +116 Sn and4He +124 Sn collisions atE/A = 50MeV [14]
is illustrated in Figure 1, next to the label ”evaporation”. Scaling is not respected in these reactions at forward
angles where contributions from pre-equilibrium processes become significant [14].

To explore the factors which govern the evaporation rates of different species that contribute to the
evaporation systematics, we utilize the formalism of Friedman and Lynch [19] which provides statistical decay
rates derived from detailed balance as in the Weisskopf model [20]. When the relative rates are dominated by
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emission within a particular window of source-mass or source-temperature, the relative yields are directly related
to the instantaneous rates

dn(N,Z)/dt ∝ T 2 · exp(−Vc/T + N · f∗
n/T + Z · f∗

p /T − B/T ) (7)

whereVc gives the Coulomb barrier, and the termsf∗
n (f∗

p ) represent the excitation contribution to the free
energy per neutron (proton). These factors are often modeled by the excited Fermi gas wherein they attain values
determined by the temperature and density of the neutron (proton) distribution. The factorB = BE(Ni, Zi) −
BE(Ni − N,Zi − Z) − BE(N,Z) reflects the separation energy associated with the removal of the isotope
from the parent nucleus, here denoted by the subscript ”i”.

If one calculatesR21 using yields from two systems, and if one adopts the approximations for the
binding energy differences between parent and daughter nuclei utilized in Eq. 6, one obtains:

R21(N,Z) ∝ exp[{(−∆sn + ∆f∗
n) · N + (−∆sp + ∆f∗

p + e∆Φ(Zi − Z)) · Z}/T ] (8)

whereΦ(Z) is the electrostatic potential at the surface of a nucleus with neutron and proton numberN andZ.
The sum of the separation energies, free excitation energies and electrostatic potentials play the same roles as
chemical potentials in Eq. 2. As the second order term from the electrostatic potential is small for the decay of
large nuclei, all factors in the exponent are proportional to eitherN or Z. Eq. 8 suggests that isotopic scaling
can be expected for evaporation of nuclei with masses small in comparison to the total mass.

In a similar manner, relative isotope ratios predicted for multifragmentation processes by the Expanding
Evaporating Source (EES) model [21] will also display isotopic scaling. This latter model utilizes a formula for
the particle emission rates which is formally identical to that of Eq. 8 but assumes values for the separation,
Coulomb, and free energies,B, Vc andf∗ that differ from those in Eq. 7 principally because the residue may
expand to sub-saturation density. In this circumstance, the separation energies may vanish or become negative,
enhancing the emission rate of fragments with3 ≤ Z ≤ 20. As in the case of pure evaporation theory, all factors
in the exponent are proportional to eitherN or Z.

Thus in all four models, compound nuclear evaporation, strongly damped binary collisions, equilibrium
multifragmentation, and the time dependent EES multifragmentation model [21], isotopic scaling is expected be-
cause the logarithm of the relative rates can be expanded to first order inN andZ . At low excitation energies, the
differences in the neutron and proton separation energies for the two systems are major factors in all expressions.
For systems of comparable mass but very different N/Z ratio, the volume, surface, and Coulomb contributions to
the separation energy largely cancel. The most important contribution to the differences in the neutron and pro-
ton separation energies inR21 comes from the symmetry term in the semi-empirical (liquid-drop) mass formula.
In the EES model, this symmetry term must be extrapolated to sub-saturation density as the system expands;
a measurement ofR21 can thereby probe the density dependence of the symmetry energy [22]. Recent SMM
model calculations [12] indicate thatµn andsnare closely related (µn ≈ −sn +f∗

n) for 0 ≤ T ≤ 3MeV, where
the decay configurations are mainly binary, but the connection betweenµn andsn becomes increasingly weak as
the role of multifragment decay configurations become important. For multifragment decays in the equilibrium
limit, the chemical potentials carry the information determining the relative N/Z ratios of the free nucleons and
light particles and how this differs from the N/Z ratio of more strongly bound fragments. If the fragments expand
at high temperature, the chemical potentials will reflect the density dependence of their symmetry energies as
well [21, 23].

The utilization of single separation energies or chemical potentials in Eqs. 1-8 is an approximation
that will break down when the range of fragment charges and masses included in the scaling plot becomes
larger. The non-linear terms in the exponent come both from the symmetry energy of the remaining system
and from Coulomb potential terms. As more detailed data over a broader range of nuclei become available, it
may be interesting to expand the exponents in Eqs. 1-8 to second order inN andZ and explore the emerging
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systematics. Many micro-canonical equivalents to the formalism for multifragmentation represented by Eq. 1
have Coulomb terms that are explicitly quadratic, density dependent, and opposite in sign to the termVc in Eq.
8.

Figure 1: The scaled isotopic ratio,S(β) is plotted as a function of N using the best fit value ofβ obtained from fitting
isotopes withZ ≥ 3. The data points plotted next to the label ”multifragmentation” in Figure 1 denoteS(β) extracted from
multifragmentation events in central124Sn +124 Sn and112Sn +112 Sn collisions[7] withβ = −0.40, α = 0.36. The
data labeled as ”mixed” areS(β) constructed from isotope yields produced in centralAu + Au multifragmentation events
[24] and evaporation events inXe + Cu [25] reactions withβ = −0.27, α = 0.41. The scaling behavior for evaporation
process is illustrated by the reactions4He +116 Sn and4He +124 Sn [14] plotted next to the label ”evaporation” with
β = −0.82, α = 0.60. Systematics of the strongly damped binary collisions is represented by the data of16O induced
reactions on two targets232Th and197Au [17] plotted next to the label ”deeply inelastic” withβ = −1.1, α = 0.74.

The systematics described by Eq. 2 rely on the emission mechanism for the fragments in each reaction
being described statistically with some common effective temperature and that distortions from secondary de-
cays cancel[7, 13, 14, 15]. However, one should note with caution that exhibition of the systematic trends does
not imply that both reacting systems proceed with the same reaction mechanism. The data labeled as ”mixed” in
Fig. 1 demonstrate this point. The isotopic yields of fragments produced in centralAu+Au multifragmentation
process atE/A = 35MeV [24] can be related via isotopic scaling to those produced in lower multiplicity evap-
oration process produced inXe+Cu reactions atE/A = 30MeV [25]. As the emission mechanisms in the two
reactions differ significantly, the parametersα andβ will reflect a mixture of factors from the evaporation and
multifragmentation models, evaluated at slightly different temperatures for the two reactions. Nothing from the
systematics itself reveals this complexity of interpretation. In order to draw correct conclusions from isotopic
measurements, it is therefore absolutely essential to obtain additional experimental information that elucidates
the underlying reaction mechanism.

In summary, we have observed a scaling between isotopic distributions which allows a transparent char-
acterization of the dependence of such distributions on the overall isospin of the system. This scaling applies
to a broad range of statistical production mechanisms including evaporation, strongly damped binary collision,
and multifragmentation. We have shown how this systematics can be explained by the theories most frequently
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applied to such processes and suggested that higher order terms may lead to deviation when the study is extended
over much wider ranges of charge or neutron number.

This work was supported by the National Science Foundation under Grant Nos. PHY-95-28844 and
PHY-96-05140.

a: Department of Physics, University of Wisconsin, Madison, WI 53706

References

1. Bao-An Li et al., Phys. Rev. Lett. 78, 1644 (1997).
2. I. Bombaci, et al., Phys. Rep. 242, 165 (1994).
3. J.M. Lattimer and M. Prakash, Ap. J. (in press).
4. R. Laforest et al., Phys. Rev. C59 2567 (1999) and refs. therein.
5. Wada et. al., Phys. Rev. Lett. 58, 1829 (1987).
6. W.U. Schroder and U.J. Huizenga, Treatise on heavy Ion Science, Ed. D.A. Bromley (Plenum Press, 1984) and refer-

ences therein.
7. H. Xu et al., Phys. Rev. Lett. (in press).
8. J. Randrup and S.E. Koonin, Nucl. Phys. A 356, 223 (1981);
9. S. Albergo et al., Nuovo Cimento A 89, 1 (1985).

10. T.K. Nayak et al., Phys. Rev. C 45, 132 (1992).
11. H. Xi et al., Phys. Rev. C 59, 1567 (1999)
12. S. R. Souza et al., NSCL preprint MSUCL-1152 and to be published
13. O.V. Lozhkin et al., Phy. Rev. C 46, 1996 (1992) and references therein.
14. J. Brzychczyk et al., Phys. Rev. C47, 1553 (1993).
15. Y. Murin et al., Europhys. Lett. 34, 5 (1996); Y. Murin et al., Physca Scripta 56, 137 (1997).
16. M. D’Agostino et al., Phys. Lett. B 371, 175 (1996); B.A. Li et al., Phys.Lett.B303, 225 (1993); A.S. Botvina et al.,

Nucl. Phys. A 584, 737 (1995).
17. V.V. Volkov, Phys. Rep. 44, 93, (1978).
18. C.K. Gelbke et. al., Phys. Rep. 42, 311 (1978)
19. W. Friedman and W. Lynch, Phys. Rev. C 28, 950 (1983).
20. V. Weisskopf, Phys. Rev, 52, 295 (1937).
21. W.A. Friedman, Phys. Rev. Lett. 60, (1988) 2125; and Phys. Rev. C42, 667 (1990).
22. Note:f∗(T/εf)/T remains roughly constant during expansion.
23. H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
24. M.J. Huang et. al., Phys. Rev. Lett. 78, 1648 (1997)
25. H. Xi et al., Phys. Rev. C 57, R462 (1998)

5


