
IMAGING TWO-PROTON CORRELATIONS IN THE PRESENCE OF
LONG TIME SCALE EMISSION MECHANISMS

G. Verde, D.A. Browna, P. Danielewicz, C.K. Gelbke, W.G. Lynch, M.B. Tsang

During an energetic nucleus-nucleus collision, the emission of particles commences at the initial overlap
of the projectile and target nuclei and continues as energy and momentum are progressively shared among
interacting nucleons. Intensity interferometry is a unique and sensitive tool for investigating the early stages of
such collisions when the dynamics are evolving rapidly [1,2]. At incident energies below the pion threshold, two-
proton interferometry, pioneered by Koonin [3], provides the principal interferometric tool. The coupling of two-
proton interferometry to various dynamical and statistical models of reaction mechanisms [4,5] has increased its
predictive power and has illuminated many qualitative and quantitative features of two proton correlations and
of heavy ion reactions [1,2].

Due to the attractive nature of the S-wave phase shift, the correlation function for two protons displays
a maximum at a relative momentum of about 20 MeV/c that is the dominant feature of correlation functions for
short lived and compact emitting regions (sources). It is often regarded as one of the most sensitive measures of
the source size or lifetime because this maximum value is inversely proportional to the volume for a compact,
zero lifetime source [1,2]. However, we show below that this maximum does not accurately reflect the size of
the emitting source; instead, the maximum value reflects more directly the relative contributions from prompt
and long time scale emission.The source size is more directly measured by the width of the peak. Using new
imaging techniques [6,7] that allow the shape of the source to vary freely, we demonstrate these sensitivities by
decomposing experimental two proton correlations for14N + 197Au collisions at 75 MeV/u.

We begin by considering the angle-averaged correlation function,C(q), for two protons with individual
momenta~p1 and~p2 and relative momentumq = |~p1−~p2|/2. Experimentally, the two proton correlation function
C(q) can be defined in terms of the coincidence yieldY (~p1, ~p2) and the single proton yieldsY (~p1) andY (~p2)
[1,2]:

ΣY (~p1, ~p2) = k · C(q) · Σ [Y (~p1) · Y (~p2)] , (1)

where the sum runs over values of~p1 and~p2 consistent with the relative momentumq. In this angle averaged
sum, all angles between the relative momentum−→q = (~p1 − ~p2) /2 and the total momentum−→ptot = ~p1 + ~p2

are considered. The normalization constantk is determined by requiringC(q) = 1 at largeq where final state
interactions can be neglected. Theoretically, the angle averaged Koonin-Pratt equation [3-5]:

C(q) = 1 + R(q) = 1 + 4π
∫

drr2K(q, r)S(r), (2)

allows the calculation of this correlation function,C(q), from the source function,S(r), defined as the proba-
bility distribution for emitting a pair of protons. The variabler corresponds to the spatial separation between the
two proton at the time the second proton is emitted [1,2]. The angle-averaged kernelK(q, r), is calculated from
the radial part of two-proton relative wave function and contains the information about how the two proton cross
section is influenced by anti-symmetrization and by the two-proton nuclear and Coulomb final state interactions.
As these factors are sensitive to the separationr, they provide a mechanism by which the source functionS(r)
can be explored.

While Eq. (2) permits any form of source function, most analyses have assumed a Gaussian profile for
S(r), normalized to unity over all space and completely defined by a single parameterr0 as follows:

S(r) = S1(r, r0) ≡ 1

(2π)3/2 r3
0

exp(− r2

2r2
0

) (3)
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Figure 1: Left panel: The solid line indicates a typical two-proton source function for intermediate energy collisions. The
dashed and dot-dashed lines provide a decomposition of the solid line into short and long time scale emissions respectively.
Right panel: The solid, dashed and dot-dashed curves show the correlation functions corresponding to the source functions
in the left panel.

where
√

3/2r0 is the rms Gaussian source radius. For such Gaussian sources,r0 and the peak value of the
correlation function at 20 MeV/c are uniquely related. However, the assumption that this relationship is true,
generally or even qualitatively, fails when one has both short and long time scale emissions.

The solid line on the left part of Fig. 1 shows a typical source function for intermediate energy heavy ion
reactions. It generates a total two-proton correlation function corresponding to the solid line in the right panel
of the figure. The total source has a short-ranged contribution approximated by the dashed line in the left panel,
which is peaked atr = 0 and originates from fast pre-equilibrium emissions that dominate the earlier stages
of the reaction. At such small distances, nuclear interactions make the dominant contribution toK(q, r); the
contribution to the total correlation function from this short-ranged contribution (dashed line, right panel) not
surpisingly displays a large maximum atq = 20MeV/c.

In addition to these pre-equilibrium contributions, there is a long exponential tail at larger-values (dot-
dashed line, left panel) that corresponds to the emission of one or both protons via long time scale secondary
decays of excited nuclei like the heavy residues, which are produced in the same collision. The distance scale
for such long time scale decays is given approximately by the mean velocity of evaporated protons times their
mean emission lifetime. At such large distances, the Coulomb interaction and the Pauli principle are the dom-
inant factors governingK(q, r); the corresponding contribution to the total correlation (dot-dashed line, right
panel) vanishes everywhere except the lowest relative momentaq < 10MeV/c. Two proton correlations at
q < 10MeV/c are rarely measured [8] with high precision, however, as they represent an extremely small and
difficult-to-measure fraction of the total two-proton cross section.

As a practical matter, the similarity of the dashed and solid lines atq < 10MeV/c in Fig. 1 makes
it clear that one images primarily the preequilibrium portion of the source in such collisions. We have calcu-
lated correlation functions assuming that a fractionλ of the two proton source is pre-equilibrium in nature and
Gaussian distributed, i.e.S(r) = Sλ(r, r0) = λS1(r, r0). Even thoughR(q) for q > 10MeV/c depends almost
entirely on the short-ranged pre-equilibrium contribution, the fact thatR(q) depends linearly onλ via the the
source functionSλ(r, r0) introduces a sensitivity to the relative contributions from long time scale emission. The
left panel of Fig. 2 shows three correlation functions generated by Gaussian sources withr0 values of 2.0, 2.5
and 3.0 fm and different normalizations ofλ = 0.38, 0.61 and1, respectively, corresponding to different total
pre-equilibrium contributions to the two proton source function. These three sets of source parameters provide
yield identical peak values for the correlation functionC(q) = 1 + R(q) but have different source radii. This
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Figure 2: Left: The curves show correlation functions for Gaussian sources with various normalizations and radii, but with
the same maximum value as discussed in the text. Right: The relationship between the with of the resonance peak at 20
MeV/c and the rms and half radii discused in the text. The line represents a best-fit interpolation of the calculated points.

demonstrates that the maximum value of the correlation alone is insufficient to disentangle its dual sensitivity to
source radiusr0 and pre-equilibrium fractionλ.

The width of the correlation functions differ, however, with smaller sources generating correlation func-
tions with wider peaks. This sensitivity is quantitatively demonstrated in the right panel in Fig. 2, which shows
the correlation between∆qFWHM (the full width at half maximum) andR1/2, the radius where the source de-
creases to 1/2 of its maximum value. (For Gaussian sources,R1/2 ≈ 1.18r0.) Indeed,∆qFWHM is insensitive
to λ by construction and accurately constrains the pre-equilibrium source radius. The additional information
provided by the peak value ofC(q) can constrain the pre-equilibrium fractionλ, or alternatively, the source
strength asr→0, S(0) as suggested by Ref. [7].

To demonstrate that the conclusions drawn from of Fig. 2 are not artifacts of the Gaussian parameter-
ization, we go beyond the limations of a two parameter(λ, r0) analysis by numerically inverting experimental
correlation functions as described by Refs. [6,7,11]. The data points in the left and right panels of Fig. 3 show
proton-proton correlation functions measured by Gong et al. [9]. These data were measured at polar angles cen-
tered aboutθcm'250 in 14N+197Au collisions at 75 MeV/u for three gates on the total laboratory momentum
of the two protons centered atPsum,c = |~p1 + ~p2|center = 330, 615 and1035 MeV/c [10]. (Details of the
experiment can be found in Ref. [9]).

The colored, dashed lines in the left panel of Fig. 3 correspond to the correlation functions calculated
using Gaussian sources of the formS1(r, r0) (no long time scale emission) and Eq. 2 following Ref. [9]. Con-
sistent with the latter analyses, a strong momentum dependence in the values forr0 of 5.9, 4.2 and 3.4 fm (R1/2

of about 7.0, 5.0 and 4.0 fm) is required to reproduce the magnitude of the correlation at 20 MeV/c for protons
with Psum,c = 330, 615 and1035 MeV/c, respectively [9]. The corresponding source functions are shown in
Fig. 4 by the colored dashed lines. However, such Gaussian sources fail to reproduce the widths of the resonance
peaks, especially for the lower total momenta,Psum,c = 330 and615, which is problematic because the widths
probe directly the source radius.

The model dependence of such analyses were avoided by parameterizing the sources for these two
proton correlations, for0≤r≤20 fm, by six 3rd-order b-spline polynomials, following Ref. [11]. The numerical
inversion of Eq. 2 was then achieved via the optimization algorithm of Ref. [7,11]. The thick color curves on the
right panel of Fig. 3 show the best-fits of the experimental data with the imaging approach. The corresponding
imaged sources are represented in Fig. 4 by bands of the same color. The widths of these curves represent the
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Figure 3: The data points refer to the experimental correlation functions measured in14N+197Au reactions at E/A=75 MeV.
The colored dashed lines and the colored bands correspond to the fit produced with the Gaussian analysis (left panel) and
the imaging analysis (right panel), respectively, as discussed in the text.

Figure 4: The red, green and blue dashed lines indicate source functions corresponding to the Gaussian fits at the momen-
tum gates shown in the left panel of Fig. 3. The red, green and blue shaded areas indicate the source functions corresponding
to the fits on the right panel Fig. 3 that were obtained by the numerical inversion discussed in the text.
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lower and upper limits defined by the one sigma error bars of the extracted source functions.
The imaging technique reproduces both the strong momentum dependence of the magnitude and the

weak momentum dependence of the width of the peak at 20 MeV/c. Consistent with the weak momentum
dependence of the widths, the extracted source radius varies little withPsum,c; values forR1/2 of 2.4, 3.1 and
2.9 fm are obtained forPsum,c = 330, 615 and1035 MeV/c, respectively, and are much smaller than the half
radii R1/2 of 7.0, 5.0 and 4.0 fm, respectively, determined by the corresponding Gaussian source analysis in the
limit λ = 1. Indeed, direct examinations of the three correlation functions yields widths of about∆qFWHM ≈
20 MeV/c corresponding to source radii of aboutR1/2≈2.7 fm (r0 ≈ 2.3 fm) when the systematics of Fig. 2 are
invoked. That the values forR1/2 extracted from∆qFWHM and Fig. 2 differ from those of the multi-parameter
imaging technique reflects the fact that the imaged sources do not have Gaussian profiles like the ones employed
to construct Fig. 2.

Even though long lifetime emission mechanisms mainly influence the shape ofR(q) at small and usu-
ally unmeasured relative momenta, the extracted normalizationλ provides stringent constraints on the pre-
equilibrium fraction of the proton yield,fpre. Sinceλ represents the total probability that both protons are of
pre-quilibrium origin, the extracted values forλ = 0.09, 0.45 and0.6 for Psum,c = 330, 615 and1035 im-
ply corresponding values forfpre =

√
λ = 0.3, 0.68 and0.78 for the fractions of the single proton yield that

are preequilibrium and complimentary values1 − √
λ = 0.7, 0.32 and0.22 for the fractions that are not. The

availability of such information from correlation function analyses is unique and of extraordinary utility to the
application of correlation function analyses to the testing of transport theoretical descriptions of nucleus-nucleus
collisions [12]. It is also of prime importance to the interpretion of multifragmentation and other fragment pro-
duction mechanisms where the role of secondary decay is not understood well enough to allow quantitative
comparisons with theoretical models [13].

In summary, we have examined the role that long time scale decays play in two proton correlation
functions. We find that when both rapid pre-equilibrium emission and long time scale evaporative emission are
present, most correlation functions permit only the imaging of the pre-equilibrium source. The presence of long
time scale emission destroys the correlation between source size and the maximum at 20 MeV/c; source size
information is primarily preserved in the width of the correlation maximum. Further analysis provide important
information about the relative importance of pre-equilibirum and long time scale emission. We confirm these
ideas via a detailed multi-parameter analysis of experimental correlation functions that allows one to avoid the
limitation and model dependences of Gaussian sources. Such analyses promise significant improvements in the
description of correlation functions and their uses to quantitative probe nuclear reactions.
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