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Shell-model calculations of the ground state and low-lying excited states are essential for our under-
standing of nuclear dynamics and the (effective) nuclear forces. The nuclear shell model with the effective
two-body interactions in a restricted Hilbert space is the best available theoretical tool for calculating the proper-
ties of the low-lying states. The region of the nuclear chart between Ca and Ni is especially important for coming
radioactive beam experiments and astrophysical applications. However, full shell-model calculations are being
limited by the exponential increase of the dimension of the many-body Hilbert space with the number of va-
lence nucleons. In the past decade, several approximate methods were proposed to deal with the dimensionality
problem. Below we apply the Exponential Convergence Method (ECM) [1].

In the ECM, possible configurations of valence nucleons in the finite number of single-particle states
are ordered according to their centroid energies. In a truncation scheme [2] for the low-lying states, higher
configurations can be consecutively added to the many-body model space in order of their centroid values. It
was shown in Ref. [1] that, as a function of the dimension of truncated Hilbert space, the energies of the low-
lying states converge exponentially to their exact values. The physics underlying this numerical observation
is associated with the exponentially decreasing admixtures of energetically distant configurations both in the
realistic shell model and in random matrices. Being analogous to the exponential localization of coordinate
wave functions of electronic states in disordered solids, the same physics is revealed in the exponential behavior
of the remote energy tails of the strength functions of simple states in complex atoms and nuclei. The strict
mathematical arguments were developed for tridiagonal matrices [1]. This property of exponential convergence
can be successfully used to predict the exact energy of the many-body eigenstates. According to Ref. [2], the
initial truncation size should exceed a certain value related to the spreading width of typical basis states found
from the Hamiltonian matrix prior to its diagonalization. It was also suggested that the matrix elements of
observables can be extracted by a similar procedure.

Here we developed the ECM into a practical tool and calculated energies, spins and isospins of the
ground states for the nuclei from42Sc to56Ni. We performed the calculation for the nuclides having the lowest
isospin projection (0 for evenA, and 1/2 for oddA) because they include the largest amount of correlations for a
given number of valence nucleons. We use the FPD6 interaction [3] which was designed to describe accurately
nuclei withA = 44 − 46, and it is known to better describe the energy gaps around56Ni. The results for the
calculated ground-state energies and quantum numbersJπT are summarized in Table I. In all cases but one, the
experimental spinJ is correctly reproduced. The only exception is forA = 45, where the three lowest states
with spinsJ = 3/2, 5/2, and 7/2 are nearly degenerate within 100 keV both in theory and experiment. Parities
and isospins (when available) are always reproduced correctly. Them-scheme dimensions are listed in Table II
along with the dimensions of theJT space corresponding to the ground-state quantum numbers. Energies of the
nuclei up toA = 49 (less than 10 valence nucleons) were calculated using full shell-model spaces; forA > 49
the ECM was used. The ground-state energy for56Ni, -203.280 MeV, is about 200 keV lower than the recently
reported value [4] derived by the Quantum Monte Carlo Diagonalization Method. A similar study using the code
NATHAN [5] and the KB3 interaction was recently reported butA = 53 and 55 nuclei were not calculated.
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A Nuclei Eg.s.(SM) Eg.s.(exp) JπT (JπT )exp

42 42Sc -19.814 -20.026 0+ 1 0+ 1
43 43Sc -32.104 -32.115 7/2− 1/2 7/2− 1/2
44 44Ti -48.142 -48.381 0+ 0 0+ 0
45 45Ti -57.782 -57.453 3/2− 1/2 7/2− 1/2
46 46V -70.696 -71.009 0+ 1 0+ 1
47 47V -83.936 -83.864 3/2− 1/2 3/2− 1/2
48 48Cr -99.970 -100.030 0+ 0 0+ 0
49 49Cr -110.029 -110.416 5/2− 1/2 5/2− 1/2
50 50Mn -122.400 -123.292 0+ 1 0+ 1
51 51Mn -135.340 -136.734 5/2− 1/2 5/2− 1/2
52 52Fe -150.980 -152.631 0+ 0 0+ 0
53 53Fe -160.880 -163.020 7/2− 1/2 7/2− 1/2
54 54Co -173.800 -176.114 0+ 1 0+ 1
55 55Co -187.000 -189.861 7/2− 1/2 7/2− 1/2
56 56Ni -203.280 -205.992 0+ 0 0+ 0

Table I: Theoretical and experimental ground state energies (in MeV), spins and isospins.

In the ECM, each consecutive truncation step includes new shell-model partitions (with increasing en-
ergy centroids) in their entirety. For small dimensions, the decrease of the truncated ground-state energy is faster
than exponential. This behavior can be attributed to a relatively coherent contribution of the lowest centroid
configurations to the structure of the ground state as compared to more chaotic contributions of the high centroid
configurations. It is important to have a working recipe for approximating the dimension where the exponential
behavior starts. In the last column of Table II we include the ratio(Es − Em)/σ, whereEs is the centroid
energy of the configuration at which the exponential behavior starts,Em is the lowest centroid energy, andσ is
the width of the lowest configuration. We observe, in agreement with [2], the exponential behavior starting at a
configuration whose centroid energy is 3-4σ above that for the lowest energy configuration.

A Nuclei JT dim m-scheme dim (Es − Em)/σ
42 42Sc 4 60
43 43Sc 61 472
44 44Ti 66 4000
45 45Ti 1250 21691
46 46V 1514 121440 3.0
47 47V 18392 483887 2.9
48 48Cr 9741 1963461 3.1
49 49Cr 232514 6004205 3.3
50 50Mn 134361 18600516 3.2
51 51Mn 1417374 44993824 3.2
52 52Fe 671159 109954620 3.2
53 53Fe 7008147 214688113 3.5
54 54Co 2299178 422818560 3.9
55 55Co 19950699 675477701 4.0
56 56Ni 2581576 1087455228 4.0

Table II: Dimensions of theJT -projected basis corresponding to the ground-state quantum numbers (see Table
I), and maximumm-scheme dimensions.
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In order to compare the ground-states energies in Table I with experiment, one must correct the experi-
mental values relative to the core of40Ca for Coulomb effects:

HC = επNπ + Vππ
Nπ(Nπ − 1)

2
+ VπνNπNν . (1)

HereNπ(Nν) denotes a number of valence protons (neutrons), and the following values of the parameters were
used [5]:επ = 7.440 MeV, Vππ = 0.274 MeV, Vπν = −0.049 MeV. They were obtained [5] by fitting the
Coulomb displacement energies for analog nuclei betweenA = 42 andA = 64.

Table I presents theoretical and experimental ground-state energies of all considered nuclei relative
to the core of40Ca. The general agreement seems to be good, however, towardA = 56 the binding energy
predicted by the FPD6 interaction is slightly smaller than the experimental value. Following Ref. [5], the simplest
correction we can make is to add monopole terms to the single-particle energies and matrix elements of the FPD6
interaction in a form that does not change the wave functions:

E(theo) = E(SM) + Emonopole , (2)

where

Emonopole = en +
1
2
n(n − 1)v

(
42

n + 42

)0.35

. (3)

Heren = A − 40 is the number of valence nucleons in thefp shell,e is the one-body monopole contribution
to average single-particle energy of the major shell,v is the average monopole contribution to the two-body
matrix elements. The mass dependence in the equation is the same as that assumed for the FPD6 interaction.
The overall quality of the resulting fit is very good; the mean square deviation is 0.27 MeV.

Full fp calculations of the ground state energies ofA = 43 andA = 45 nuclei are reported, to our
knowledge, for the first time. The results indicate that the ECM is a powerful tool for calculating the properties
of low-lying states when the full large-scale shell-model diagonalization is not feasible. The FPD6 interaction
with monopole corrections can be successfully used to describe the ground-state properties of thefp nuclei.
Additional studies along the same line for the excited states, transition probabilities and other observables are
necessary.
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